Quantum neural networks facilitating quantum state classification
- URL: http://arxiv.org/abs/2504.06622v1
- Date: Wed, 09 Apr 2025 06:42:32 GMT
- Title: Quantum neural networks facilitating quantum state classification
- Authors: Diksha Sharma, Vivek Balasaheb Sabale, Thirumalai M., Atul Kumar,
- Abstract summary: This work establishes a foundation for the classification of multi-qubit quantum states.<n>It offers the potential for generalisation to multi-qubit pure quantum states.
- Score: 1.3187011661009458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The classification of quantum states into distinct classes poses a significant challenge. In this study, we address this problem using quantum neural networks in combination with a problem-inspired circuit and customised as well as predefined ans\"{a}tz. To facilitate the resource-efficient quantum state classification, we construct the dataset of quantum states using the proposed problem-inspired circuit. The problem-inspired circuit incorporates two-qubit parameterised unitary gates of varying entangling power, which is further integrated with the ans\"{a}tz, developing an entire quantum neural network. To demonstrate the capability of the selected ans\"{a}tz, we visualise the mitigated barren plateaus. The designed quantum neural network demonstrates the efficiency in binary and multi-class classification tasks. This work establishes a foundation for the classification of multi-qubit quantum states and offers the potential for generalisation to multi-qubit pure quantum states.
Related papers
- Natural Quantization of Neural Networks [0.0]
We propose a natural quantization of a standard neural network, where the neurons correspond to qubits and the activation functions are implemented via quantum gates and measurements.<n>We benchmark this architecture on a subset of the standard MNIST dataset and find a regime of "quantum advantage"<n>The proposed quantum neural networks are readily realizable in present-day quantum computers on commercial datasets.
arXiv Detail & Related papers (2025-03-19T17:57:11Z) - A Quantum-Classical Collaborative Training Architecture Based on Quantum
State Fidelity [50.387179833629254]
We introduce a collaborative classical-quantum architecture called co-TenQu.
Co-TenQu enhances a classical deep neural network by up to 41.72% in a fair setting.
It outperforms other quantum-based methods by up to 1.9 times and achieves similar accuracy while utilizing 70.59% fewer qubits.
arXiv Detail & Related papers (2024-02-23T14:09:41Z) - Quantum machine learning for image classification [39.58317527488534]
This research introduces two quantum machine learning models that leverage the principles of quantum mechanics for effective computations.
Our first model, a hybrid quantum neural network with parallel quantum circuits, enables the execution of computations even in the noisy intermediate-scale quantum era.
A second model introduces a hybrid quantum neural network with a Quanvolutional layer, reducing image resolution via a convolution process.
arXiv Detail & Related papers (2023-04-18T18:23:20Z) - QuanGCN: Noise-Adaptive Training for Robust Quantum Graph Convolutional
Networks [124.7972093110732]
We propose quantum graph convolutional networks (QuanGCN), which learns the local message passing among nodes with the sequence of crossing-gate quantum operations.
To mitigate the inherent noises from modern quantum devices, we apply sparse constraint to sparsify the nodes' connections.
Our QuanGCN is functionally comparable or even superior than the classical algorithms on several benchmark graph datasets.
arXiv Detail & Related papers (2022-11-09T21:43:16Z) - An unsupervised feature learning for quantum-classical convolutional
network with applications to fault detection [5.609958919699706]
We present a simple unsupervised method for quantum-classical convolutional networks to learn a hierarchy of quantum feature extractors.
The main contribution of the proposed approach is to use the $K$-means clustering to maximize the difference of quantum properties in quantum circuit ansatz.
arXiv Detail & Related papers (2021-07-17T03:16:59Z) - Quantum Federated Learning with Quantum Data [87.49715898878858]
Quantum machine learning (QML) has emerged as a promising field that leans on the developments in quantum computing to explore large complex machine learning problems.
This paper proposes the first fully quantum federated learning framework that can operate over quantum data and, thus, share the learning of quantum circuit parameters in a decentralized manner.
arXiv Detail & Related papers (2021-05-30T12:19:27Z) - Quantum neural networks with multi-qubit potentials [0.0]
We show that the presence of multi-qubit potentials in the quantum perceptrons enables more efficient information processing tasks.
This simplification in the network architecture paves the way to address the connectivity challenge to scale up a quantum neural network.
arXiv Detail & Related papers (2021-05-06T15:30:06Z) - Entangling Quantum Generative Adversarial Networks [53.25397072813582]
We propose a new type of architecture for quantum generative adversarial networks (entangling quantum GAN, EQ-GAN)
We show that EQ-GAN has additional robustness against coherent errors and demonstrate the effectiveness of EQ-GAN experimentally in a Google Sycamore superconducting quantum processor.
arXiv Detail & Related papers (2021-04-30T20:38:41Z) - The Hintons in your Neural Network: a Quantum Field Theory View of Deep
Learning [84.33745072274942]
We show how to represent linear and non-linear layers as unitary quantum gates, and interpret the fundamental excitations of the quantum model as particles.
On top of opening a new perspective and techniques for studying neural networks, the quantum formulation is well suited for optical quantum computing.
arXiv Detail & Related papers (2021-03-08T17:24:29Z) - Realising and compressing quantum circuits with quantum reservoir
computing [2.834895018689047]
We show how a random network of quantum nodes can be used as a robust hardware for quantum computing.
Our network architecture induces quantum operations by optimising only a single layer of quantum nodes.
In the few-qubit regime, sequences of multiple quantum gates in quantum circuits can be compressed with a single operation.
arXiv Detail & Related papers (2020-03-21T03:29:16Z) - Entanglement Classification via Neural Network Quantum States [58.720142291102135]
In this paper we combine machine-learning tools and the theory of quantum entanglement to perform entanglement classification for multipartite qubit systems in pure states.
We use a parameterisation of quantum systems using artificial neural networks in a restricted Boltzmann machine (RBM) architecture, known as Neural Network Quantum States (NNS)
arXiv Detail & Related papers (2019-12-31T07:40:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.