Quantum annealing approach to Ionic Diffusion in Solid
- URL: http://arxiv.org/abs/1912.13251v2
- Date: Sun, 19 Jul 2020 14:18:52 GMT
- Title: Quantum annealing approach to Ionic Diffusion in Solid
- Authors: Keishu Utimula, Tom Ichibha, Genki I. Prayogo, Kenta Hongo, Kousuke
Nakano, Ryo Maezono
- Abstract summary: Existing methods can only calculate the correlation factor analytically in the case of physically unrealistic models.
We have mapped the problem into a quantum spin system described by the Ising Hamiltonian.
We have calculated the correlation factor in a simple case with a known exact result by a variety of computational methods.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We have developed a framework for using quantum annealing computation to
evaluate a key quantity in ionic diffusion in solids, the correlation factor.
Existing methods can only calculate the correlation factor analytically in the
case of physically unrealistic models, making it difficult to relate
microstructural information about diffusion path networks obtainable by current
${ab\ initio}$ techniques to macroscopic quantities such as diffusion
coefficients. We have mapped the problem into a quantum spin system described
by the Ising Hamiltonian. By applying our framework in combination with ab
initio technique, it is possible to understand how diffusion coefficients are
controlled by temperatures, pressures, atomic substitutions, and other
factors.We have calculated the correlation factor in a simple case with a known
exact result by a variety of computational methods, including simulated quantum
annealing on the spin models, the classical random walk, the matrix
description, and quantum annealing on D-Wave with hybrid solver. This
comparison shows that all the evaluations give consistent results with each
other, but that many of the conventional approaches require infeasible
computational costs. Quantum annealing is also currently infeasible because of
the cost and scarcity of Q-bits, but we argue that when technological advances
alter this situation, quantum annealing will easily outperform all existing
methods.
Related papers
- A Theoretical Framework for an Efficient Normalizing Flow-Based Solution to the Electronic Schrodinger Equation [8.648660469053342]
A central problem in quantum mechanics involves solving the Electronic Schrodinger Equation for a molecule or material.
We propose a solution via an ansatz which is cheap to sample from, yet satisfies the requisite quantum mechanical properties.
arXiv Detail & Related papers (2024-05-28T15:42:15Z) - Quantum benefit of the quantum equation of motion for the strongly
coupled many-body problem [0.0]
The quantum equation of motion (qEOM) is a hybrid quantum-classical algorithm for computing excitation properties of a fermionic many-body system.
We demonstrate explicitly that the qEOM exhibits a quantum benefit due to the independence of the number of required quantum measurements.
arXiv Detail & Related papers (2023-09-18T22:10:26Z) - A hybrid quantum-classical algorithm for multichannel quantum scattering
of atoms and molecules [62.997667081978825]
We propose a hybrid quantum-classical algorithm for solving the Schr"odinger equation for atomic and molecular collisions.
The algorithm is based on the $S$-matrix version of the Kohn variational principle, which computes the fundamental scattering $S$-matrix.
We show how the algorithm could be scaled up to simulate collisions of large polyatomic molecules.
arXiv Detail & Related papers (2023-04-12T18:10:47Z) - Importance sampling for stochastic quantum simulations [68.8204255655161]
We introduce the qDrift protocol, which builds random product formulas by sampling from the Hamiltonian according to the coefficients.
We show that the simulation cost can be reduced while achieving the same accuracy, by considering the individual simulation cost during the sampling stage.
Results are confirmed by numerical simulations performed on a lattice nuclear effective field theory.
arXiv Detail & Related papers (2022-12-12T15:06:32Z) - Decimation technique for open quantum systems: a case study with
driven-dissipative bosonic chains [62.997667081978825]
Unavoidable coupling of quantum systems to external degrees of freedom leads to dissipative (non-unitary) dynamics.
We introduce a method to deal with these systems based on the calculation of (dissipative) lattice Green's function.
We illustrate the power of this method with several examples of driven-dissipative bosonic chains of increasing complexity.
arXiv Detail & Related papers (2022-02-15T19:00:09Z) - Numerical Simulations of Noisy Quantum Circuits for Computational
Chemistry [51.827942608832025]
Near-term quantum computers can calculate the ground-state properties of small molecules.
We show how the structure of the computational ansatz as well as the errors induced by device noise affect the calculation.
arXiv Detail & Related papers (2021-12-31T16:33:10Z) - Quantum computing for classical problems: Variational Quantum
Eigensolver for activated processes [0.0]
This paper reports the development and implementation of a Variational Quantum Eigensolver procedure to solve the Fokker-Planck-Smoluchowski eigenvalue problem.
We show that such an algorithm, typically adopted to address quantum chemistry problems, can be applied effectively to classical systems paving the way to new applications of quantum computers.
arXiv Detail & Related papers (2021-07-27T18:16:16Z) - Circuit quantum electrodynamics (cQED) with modular quasi-lumped models [0.23624125155742057]
Method partitions a quantum device into compact lumped or quasi-distributed cells.
We experimentally validate the method on large-scale, state-of-the-art superconducting quantum processors.
arXiv Detail & Related papers (2021-03-18T16:03:37Z) - The role of boundary conditions in quantum computations of scattering
observables [58.720142291102135]
Quantum computing may offer the opportunity to simulate strongly-interacting field theories, such as quantum chromodynamics, with physical time evolution.
As with present-day calculations, quantum computation strategies still require the restriction to a finite system size.
We quantify the volume effects for various $1+1$D Minkowski-signature quantities and show that these can be a significant source of systematic uncertainty.
arXiv Detail & Related papers (2020-07-01T17:43:11Z) - Recovering quantum correlations in optical lattices from interaction
quenches [0.0]
Quantum simulations with ultra-cold atoms in optical lattices open up an exciting path towards understanding strongly interacting quantum systems.
Currently a direct measurement of local coherent currents is out of reach.
We show how to achieve that by measuring densities that are altered in response to quenches to non-interacting dynamics.
arXiv Detail & Related papers (2020-05-18T18:03:33Z) - Quantum Statistical Complexity Measure as a Signalling of Correlation
Transitions [55.41644538483948]
We introduce a quantum version for the statistical complexity measure, in the context of quantum information theory, and use it as a signalling function of quantum order-disorder transitions.
We apply our measure to two exactly solvable Hamiltonian models, namely: the $1D$-Quantum Ising Model and the Heisenberg XXZ spin-$1/2$ chain.
We also compute this measure for one-qubit and two-qubit reduced states for the considered models, and analyse its behaviour across its quantum phase transitions for finite system sizes as well as in the thermodynamic limit by using Bethe ansatz.
arXiv Detail & Related papers (2020-02-05T00:45:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.