Interpretable Conservation Law Estimation by Deriving the Symmetries of
Dynamics from Trained Deep Neural Networks
- URL: http://arxiv.org/abs/2001.00111v2
- Date: Sun, 19 Apr 2020 00:08:18 GMT
- Title: Interpretable Conservation Law Estimation by Deriving the Symmetries of
Dynamics from Trained Deep Neural Networks
- Authors: Yoh-ichi Mototake
- Abstract summary: We propose a novel framework that can infer the hidden conservation laws of a complex system from deep neural networks (DNNs)
The proposed framework is developed by deriving the relationship between a manifold structure of time-series dataset and the necessary conditions for Noether's theorem.
We apply the proposed framework to conservation law estimation for a more practical case that is a large-scale collective motion system in the metastable state.
- Score: 1.14219428942199
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Understanding complex systems with their reduced model is one of the central
roles in scientific activities. Although physics has greatly been developed
with the physical insights of physicists, it is sometimes challenging to build
a reduced model of such complex systems on the basis of insights alone. We
propose a novel framework that can infer the hidden conservation laws of a
complex system from deep neural networks (DNNs) that have been trained with
physical data of the system. The purpose of the proposed framework is not to
analyze physical data with deep learning, but to extract interpretable physical
information from trained DNNs. With Noether's theorem and by an efficient
sampling method, the proposed framework infers conservation laws by extracting
symmetries of dynamics from trained DNNs. The proposed framework is developed
by deriving the relationship between a manifold structure of time-series
dataset and the necessary conditions for Noether's theorem. The feasibility of
the proposed framework has been verified in some primitive cases for which the
conservation law is well known. We also apply the proposed framework to
conservation law estimation for a more practical case that is a large-scale
collective motion system in the metastable state, and we obtain a result
consistent with that of a previous study.
Related papers
- Learning Neural Constitutive Laws From Motion Observations for
Generalizable PDE Dynamics [97.38308257547186]
Many NN approaches learn an end-to-end model that implicitly models both the governing PDE and material models.
We argue that the governing PDEs are often well-known and should be explicitly enforced rather than learned.
We introduce a new framework termed "Neural Constitutive Laws" (NCLaw) which utilizes a network architecture that strictly guarantees standard priors.
arXiv Detail & Related papers (2023-04-27T17:42:24Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - Guaranteed Conservation of Momentum for Learning Particle-based Fluid
Dynamics [96.9177297872723]
We present a novel method for guaranteeing linear momentum in learned physics simulations.
We enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers.
In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially.
arXiv Detail & Related papers (2022-10-12T09:12:59Z) - Learning dynamics from partial observations with structured neural ODEs [5.757156314867639]
We propose a flexible framework to incorporate a broad spectrum of physical insight into neural ODE-based system identification.
We demonstrate the performance of the proposed approach on numerical simulations and on an experimental dataset from a robotic exoskeleton.
arXiv Detail & Related papers (2022-05-25T07:54:10Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Physics-guided Deep Markov Models for Learning Nonlinear Dynamical
Systems with Uncertainty [6.151348127802708]
We propose a physics-guided framework, termed Physics-guided Deep Markov Model (PgDMM)
The proposed framework takes advantage of the expressive power of deep learning, while retaining the driving physics of the dynamical system.
arXiv Detail & Related papers (2021-10-16T16:35:12Z) - Physics-aware, deep probabilistic modeling of multiscale dynamics in the
Small Data regime [0.0]
The present paper offers a probabilistic perspective that simultaneously identifies predictive, lower-dimensional coarse-grained (CG) variables as well as their dynamics.
We make use of the expressive ability of deep neural networks in order to represent the right-hand side of the CG evolution law.
We demonstrate the efficacy of the proposed framework in a high-dimensional system of moving particles.
arXiv Detail & Related papers (2021-02-08T15:04:05Z) - Developing Constrained Neural Units Over Time [81.19349325749037]
This paper focuses on an alternative way of defining Neural Networks, that is different from the majority of existing approaches.
The structure of the neural architecture is defined by means of a special class of constraints that are extended also to the interaction with data.
The proposed theory is cast into the time domain, in which data are presented to the network in an ordered manner.
arXiv Detail & Related papers (2020-09-01T09:07:25Z) - Parsimonious neural networks learn interpretable physical laws [77.34726150561087]
We propose parsimonious neural networks (PNNs) that combine neural networks with evolutionary optimization to find models that balance accuracy with parsimony.
The power and versatility of the approach is demonstrated by developing models for classical mechanics and to predict the melting temperature of materials from fundamental properties.
arXiv Detail & Related papers (2020-05-08T16:15:47Z) - Symplectic ODE-Net: Learning Hamiltonian Dynamics with Control [14.24939133094439]
We introduce Symplectic ODE-Net (SymODEN), a deep learning framework which can infer the dynamics of a physical system.
In particular, we enforce Hamiltonian dynamics with control to learn the underlying dynamics in a transparent way.
This framework, by offering interpretable, physically-consistent models for physical systems, opens up new possibilities for synthesizing model-based control strategies.
arXiv Detail & Related papers (2019-09-26T13:13:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.