Academic Performance Estimation with Attention-based Graph Convolutional
Networks
- URL: http://arxiv.org/abs/2001.00632v1
- Date: Thu, 26 Dec 2019 23:11:27 GMT
- Title: Academic Performance Estimation with Attention-based Graph Convolutional
Networks
- Authors: Qian Hu, Huzefa Rangwala
- Abstract summary: Given a student's past data, the task of student's performance prediction is to predict a student's grades in future courses.
Traditional methods for student's performance prediction usually neglect the underlying relationships between multiple courses.
We propose a novel attention-based graph convolutional networks model for student's performance prediction.
- Score: 17.985752744098267
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Student's academic performance prediction empowers educational technologies
including academic trajectory and degree planning, course recommender systems,
early warning and advising systems. Given a student's past data (such as grades
in prior courses), the task of student's performance prediction is to predict a
student's grades in future courses. Academic programs are structured in a way
that prior courses lay the foundation for future courses. The knowledge
required by courses is obtained by taking multiple prior courses, which
exhibits complex relationships modeled by graph structures. Traditional methods
for student's performance prediction usually neglect the underlying
relationships between multiple courses; and how students acquire knowledge
across them. In addition, traditional methods do not provide interpretation for
predictions needed for decision making. In this work, we propose a novel
attention-based graph convolutional networks model for student's performance
prediction. We conduct extensive experiments on a real-world dataset obtained
from a large public university. The experimental results show that our proposed
model outperforms state-of-the-art approaches in terms of grade prediction. The
proposed model also shows strong accuracy in identifying students who are
at-risk of failing or dropping out so that timely intervention and feedback can
be provided to the student.
Related papers
- A Survey of Deep Graph Learning under Distribution Shifts: from Graph Out-of-Distribution Generalization to Adaptation [59.14165404728197]
We provide an up-to-date and forward-looking review of deep graph learning under distribution shifts.
Specifically, we cover three primary scenarios: graph OOD generalization, training-time graph OOD adaptation, and test-time graph OOD adaptation.
To provide a better understanding of the literature, we systematically categorize the existing models based on our proposed taxonomy.
arXiv Detail & Related papers (2024-10-25T02:39:56Z) - Learning-Augmented Algorithms with Explicit Predictors [67.02156211760415]
Recent advances in algorithmic design show how to utilize predictions obtained by machine learning models from past and present data.
Prior research in this context was focused on a paradigm where the predictor is pre-trained on past data and then used as a black box.
In this work, we unpack the predictor and integrate the learning problem it gives rise for within the algorithmic challenge.
arXiv Detail & Related papers (2024-03-12T08:40:21Z) - Enhancing the Performance of Automated Grade Prediction in MOOC using
Graph Representation Learning [3.4882560718166626]
Massive Open Online Courses (MOOCs) have gained significant traction as a rapidly growing phenomenon in online learning.
Current automated assessment approaches overlook the structural links between different entities involved in the downstream tasks.
We construct a unique knowledge graph for a large MOOC dataset, which will be publicly available to the research community.
arXiv Detail & Related papers (2023-10-18T19:27:39Z) - A Predictive Model using Machine Learning Algorithm in Identifying
Students Probability on Passing Semestral Course [0.0]
This study employs classification for data mining techniques, and decision tree for algorithm.
With the utilization of the newly discovered predictive model, the prediction of students probabilities to pass the current courses they take gives 0.7619 accuracy, 0.8333 precision, 0.8823 recall, and 0.8571 f1 score.
arXiv Detail & Related papers (2023-04-12T01:57:08Z) - ASPEST: Bridging the Gap Between Active Learning and Selective
Prediction [56.001808843574395]
Selective prediction aims to learn a reliable model that abstains from making predictions when uncertain.
Active learning aims to lower the overall labeling effort, and hence human dependence, by querying the most informative examples.
In this work, we introduce a new learning paradigm, active selective prediction, which aims to query more informative samples from the shifted target domain.
arXiv Detail & Related papers (2023-04-07T23:51:07Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - Learning Predictions for Algorithms with Predictions [49.341241064279714]
We introduce a general design approach for algorithms that learn predictors.
We apply techniques from online learning to learn against adversarial instances, tune robustness-consistency trade-offs, and obtain new statistical guarantees.
We demonstrate the effectiveness of our approach at deriving learning algorithms by analyzing methods for bipartite matching, page migration, ski-rental, and job scheduling.
arXiv Detail & Related papers (2022-02-18T17:25:43Z) - Tri-Branch Convolutional Neural Networks for Top-$k$ Focused Academic
Performance Prediction [28.383922154797315]
Academic performance prediction aims to leverage student-related information to predict their future academic outcomes.
In this paper, we analyze students' daily behavior trajectories, which can be comprehensively tracked with campus smartcard records.
We propose a novel Tri-Branch CNN architecture, which is equipped with row-wise, column-wise, and depth-wise convolution and attention operations.
arXiv Detail & Related papers (2021-07-22T02:35:36Z) - Early Performance Prediction using Interpretable Patterns in Programming
Process Data [13.413990352918098]
We leverage rich, fine-grained log data to build a model to predict student course outcomes.
We evaluate our approach on a dataset from 106 students in a block-based, introductory programming course.
arXiv Detail & Related papers (2021-02-10T22:46:45Z) - Video Prediction via Example Guidance [156.08546987158616]
In video prediction tasks, one major challenge is to capture the multi-modal nature of future contents and dynamics.
In this work, we propose a simple yet effective framework that can efficiently predict plausible future states.
arXiv Detail & Related papers (2020-07-03T14:57:24Z) - Context-aware Non-linear and Neural Attentive Knowledge-based Models for
Grade Prediction [12.592903558338444]
Grade prediction for future courses not yet taken by students is important as it can help them and their advisers during the process of course selection.
One of the successful approaches for accurately predicting a student's grades in future courses is Cumulative Knowledge-based Regression Models (CKRM)
CKRM learns shallow linear models that predict a student's grades as the similarity between his/her knowledge state and the target course.
We propose context-aware non-linear and neural attentive models that can potentially better estimate a student's knowledge state from his/her prior course information.
arXiv Detail & Related papers (2020-03-09T20:20:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.