Consistent Quantum Causes
- URL: http://arxiv.org/abs/2303.13617v3
- Date: Sun, 08 Dec 2024 00:52:07 GMT
- Title: Consistent Quantum Causes
- Authors: Robert B. Griffiths,
- Abstract summary: The Consistent Histories approach provides such a theory.
It justifies the usual laboratory intuition that properly tested apparatus can reveal the earlier microscopic cause.
The use of quantum circuits in discussions of quantum information in a time-irreversible manner can prevent the proper identification of earlier causes.
- Score: 2.1756081703276
- License:
- Abstract: Developing a quantum analog of the modern classical theory of causation, as formulated by Pearl and others using directed acyclic graphs, requires a theory of random or stochastic time development at the microscopic level, where the noncommutation of Hilbert-space projectors cannot be ignored. The Consistent Histories approach provides such a theory. How it works is shown by applying it to simple examples involving beam splitters and a Mach-Zehnder interferometer. It justifies the usual laboratory intuition that properly tested apparatus can reveal the earlier microscopic cause (e.g., as in radioactive decay) of a later macroscopic meassurement outcome. This approach is further illustrated by how it resolves the Bell inequalities paradox. The use of quantum circuits in discussions of quantum information in a time-irreversible manner can prevent the proper identification of earlier causes; this is illustrated using a specific circuit in the case of Bell inequalities. The approach to quantum causes known as Quantum Causal Models fails becuase it is not based upon a satisfactory theory of quantum random processes.
Related papers
- Bohmian Mechanics fails to compute multi-time correlations [0.0]
Bohmian mechanics is a realistic, non-local theory of classical particle trajectories.
We set up a spatial version of the GHZ system with qubits realised as positional observables.
arXiv Detail & Related papers (2025-02-20T11:03:38Z) - Quantum physics cannot be captured by classical linear hidden variable
theories even in the absence of entanglement [0.0]
We study the quantum trajectories of a single qubit that experiences a sequence of generalised measurements.
We conclude that quantum physics cannot be replaced by linear hidden variable theories.
arXiv Detail & Related papers (2023-10-20T21:06:15Z) - Non-Abelian braiding of graph vertices in a superconducting processor [144.97755321680464]
Indistinguishability of particles is a fundamental principle of quantum mechanics.
braiding of non-Abelian anyons causes rotations in a space of degenerate wavefunctions.
We experimentally verify the fusion rules of the anyons and braid them to realize their statistics.
arXiv Detail & Related papers (2022-10-19T02:28:44Z) - Quantum Bayes' Rule Affirms Consistency in Measurement Inferences in
Quantum Mechanics [0.0]
We show that it is inadequate to establish correct correspondence between cause and effect in quantum mechanics.
We introduce an input-output causal relation based on quantum Bayes' rule.
arXiv Detail & Related papers (2022-07-18T14:14:50Z) - Characterizing quantum instruments: from non-demolition measurements to
quantum error correction [48.43720700248091]
In quantum information processing quantum operations are often processed alongside measurements which result in classical data.
Non-unitary dynamical processes can take place on the system, for which common quantum channel descriptions fail to describe the time evolution.
Quantum measurements are correctly treated by means of so-called quantum instruments capturing both classical outputs and post-measurement quantum states.
arXiv Detail & Related papers (2021-10-13T18:00:13Z) - Experimental test of quantum causal influences [0.6291681227094761]
Quantum correlations can violate classical bounds on the causal influence even in scenarios where no violation of a Bell inequality is ever possible.
We experimentally observe this new witness of nonclassicality for the first time.
arXiv Detail & Related papers (2021-08-19T21:47:18Z) - Classical model of delayed-choice quantum eraser [0.0]
Wheeler's delayed-choice experiment was conceived to illustrate the paradoxical nature of wave-particle duality in quantum mechanics.
In the experiment, quantum light can exhibit either wave-like interference patterns or particle-like anti-correlations.
A variant known as the quantum eraser uses entangled light to recover the lost interference in a seemingly nonlocal and retrocausal manner.
arXiv Detail & Related papers (2021-01-09T14:47:28Z) - From a quantum theory to a classical one [117.44028458220427]
We present and discuss a formal approach for describing the quantum to classical crossover.
The method was originally introduced by L. Yaffe in 1982 for tackling large-$N$ quantum field theories.
arXiv Detail & Related papers (2020-04-01T09:16:38Z) - Quantum Mechanical description of Bell's experiment assumes Locality [91.3755431537592]
Bell's experiment description assumes the (Quantum Mechanics-language equivalent of the classical) condition of Locality.
This result is complementary to a recently published one demonstrating that non-Locality is necessary to describe said experiment.
It is concluded that, within the framework of Quantum Mechanics, there is absolutely no reason to believe in the existence of non-Local effects.
arXiv Detail & Related papers (2020-02-27T15:04:08Z) - Probing the Universality of Topological Defect Formation in a Quantum
Annealer: Kibble-Zurek Mechanism and Beyond [46.39654665163597]
We report on experimental tests of topological defect formation via the one-dimensional transverse-field Ising model.
We find that the quantum simulator results can indeed be explained by the KZM for open-system quantum dynamics with phase-flip errors.
This implies that the theoretical predictions of the generalized KZM theory, which assumes isolation from the environment, applies beyond its original scope to an open system.
arXiv Detail & Related papers (2020-01-31T02:55:35Z) - Bell's theorem for trajectories [62.997667081978825]
A trajectory is not an outcome of a quantum measurement, in the sense that there is no observable associated with it.
We show how to overcome this problem by considering a special case of our generic inequality that can be experimentally tested point-by-point in time.
arXiv Detail & Related papers (2020-01-03T01:40:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.