論文の概要: Deep Unsupervised Common Representation Learning for LiDAR and Camera
Data using Double Siamese Networks
- arxiv url: http://arxiv.org/abs/2001.00762v1
- Date: Fri, 3 Jan 2020 08:53:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-14 18:05:05.057919
- Title: Deep Unsupervised Common Representation Learning for LiDAR and Camera
Data using Double Siamese Networks
- Title(参考訳): ダブルシームネットワークを用いたLiDARとカメラデータのための教師なし共通表現学習
- Authors: Andreas B\"uhler, Niclas V\"odisch, Mathias B\"urki, Lukas Schaupp
- Abstract要約: センサーモダリティのドメインギャップは、自律ロボットの設計に課題をもたらす。
本稿では,LiDARとカメラデータの共通表現を見つけるための2つの教師なしトレーニングフレームワークを提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Domain gaps of sensor modalities pose a challenge for the design of
autonomous robots. Taking a step towards closing this gap, we propose two
unsupervised training frameworks for finding a common representation of LiDAR
and camera data. The first method utilizes a double Siamese training structure
to ensure consistency in the results. The second method uses a Canny edge image
guiding the networks towards a desired representation. All networks are trained
in an unsupervised manner, leaving room for scalability. The results are
evaluated using common computer vision applications, and the limitations of the
proposed approaches are outlined.
- Abstract(参考訳): センサーモダリティのドメインギャップは、自律ロボットの設計に課題をもたらす。
このギャップを埋めるために、LiDARとカメラデータの共通表現を見つけるための2つの教師なしトレーニングフレームワークを提案する。
最初の方法は、結果の整合性を確保するために、ダブルシームズトレーニング構造を利用する。
第2の方法は、ネットワークを所望の表現に向けて導くキャニーエッジ画像を使用する。
すべてのネットワークは教師なしの方法でトレーニングされ、スケーラビリティの余地を残します。
その結果,一般的なコンピュータビジョンアプリケーションを用いて評価し,提案手法の限界について概説する。
関連論文リスト
- LiOn-XA: Unsupervised Domain Adaptation via LiDAR-Only Cross-Modal Adversarial Training [61.26381389532653]
LiOn-XAは、LiDAR-Only Cross-Modal (X)学習と3D LiDARポイントクラウドセマンティックセマンティックセグメンテーションのためのAdversarial Trainingを組み合わせた、教師なしドメイン適応(UDA)アプローチである。
3つの現実的適応シナリオに関する実験は、我々のアプローチの有効性を実証している。
論文 参考訳(メタデータ) (2024-10-21T09:50:17Z) - Camera-LiDAR Cross-modality Gait Recognition [29.694346498355443]
本稿では,カメラとLiDAR,すなわちCL-Gait間の最初の相互モダリティ歩行認識フレームワークを提案する。
私たちの知る限りでは、これはモダリティ間の歩行認識に対処する最初の試みである。
論文 参考訳(メタデータ) (2024-07-02T08:10:37Z) - HVDistill: Transferring Knowledge from Images to Point Clouds via Unsupervised Hybrid-View Distillation [106.09886920774002]
本稿では,HVDistillと呼ばれるハイブリッドビューに基づく知識蒸留フレームワークを提案する。
提案手法は,スクラッチからトレーニングしたベースラインに対して一貫した改善を実現し,既存のスキームを大幅に上回っている。
論文 参考訳(メタデータ) (2024-03-18T14:18:08Z) - Self-supervised Learning of LiDAR 3D Point Clouds via 2D-3D Neural Calibration [107.61458720202984]
本稿では,自律走行シーンにおける3次元知覚を高めるための,新しい自己教師型学習フレームワークを提案する。
本稿では,画像とポイントクラウドデータの領域ギャップを埋めるために,学習可能な変換アライメントを提案する。
我々は剛性ポーズを推定するために密度の高い2D-3D対応を確立する。
論文 参考訳(メタデータ) (2024-01-23T02:41:06Z) - Deep Learning Based Face Recognition Method using Siamese Network [0.0]
本稿では,顔画像のラベル付けの必要性を解消し,顔認識にSiameseネットワークを採用することを提案する。
我々は、近隣の隣り合う負のサンプルを戦略的に活用することで、これを実現する。
提案した教師なしシステムは、類似しているが完全に教師付きベースラインと同等のパフォーマンスを提供する。
論文 参考訳(メタデータ) (2023-12-21T16:35:11Z) - Geometric-aware Pretraining for Vision-centric 3D Object Detection [77.7979088689944]
GAPretrainと呼ばれる新しい幾何学的事前学習フレームワークを提案する。
GAPretrainは、複数の最先端検出器に柔軟に適用可能なプラグアンドプレイソリューションとして機能する。
BEVFormer法を用いて, nuScenes val の 46.2 mAP と 55.5 NDS を実現し, それぞれ 2.7 と 2.1 点を得た。
論文 参考訳(メタデータ) (2023-04-06T14:33:05Z) - Unsupervised Industrial Anomaly Detection via Pattern Generative and Contrastive Networks [6.393288885927437]
本稿では,視覚変換器を用いた教師なし異常検出ネットワークを提案する。
階層的なタスク学習と人間の経験を利用して、その解釈可能性を高めます。
従来の最先端手法を超越した99.8%のAUCを実現した。
論文 参考訳(メタデータ) (2022-07-20T10:09:53Z) - SimIPU: Simple 2D Image and 3D Point Cloud Unsupervised Pre-Training for
Spatial-Aware Visual Representations [85.38562724999898]
我々はSimIPUと呼ばれる2Dイメージと3Dポイントクラウドの教師なし事前学習戦略を提案する。
具体的には、モーダル内空間認識モジュールとモーダル間特徴相互作用モジュールからなるマルチモーダルコントラスト学習フレームワークを開発する。
我々の知る限りでは、屋外マルチモーダルデータセットに対する対照的な学習事前学習戦略を探求する最初の研究である。
論文 参考訳(メタデータ) (2021-12-09T03:27:00Z) - Introducing Pose Consistency and Warp-Alignment for Self-Supervised 6D
Object Pose Estimation in Color Images [38.9238085806793]
オブジェクトの6Dポーズを推定する最も成功したアプローチは、現実世界の画像で注釈付きのポーズで学習を監督することによって、ニューラルネットワークを訓練する。
既存のニューラルネットワークベースのアプローチの上に適用可能な2段階の6Dオブジェクトポーズ推定フレームワークを提案する。
論文 参考訳(メタデータ) (2020-03-27T11:53:38Z) - Supervised and Unsupervised Learning of Parameterized Color Enhancement [112.88623543850224]
我々は、教師なし学習と教師なし学習の両方を用いて、画像翻訳タスクとしての色強調の問題に取り組む。
我々は,MIT-Adobe FiveKベンチマークにおいて,教師付き(ペアデータ)と教師なし(ペアデータ)の2つの画像強調手法と比較して,最先端の結果が得られた。
20世紀初頭の写真や暗黒ビデオフレームに応用することで,本手法の一般化能力を示す。
論文 参考訳(メタデータ) (2019-12-30T13:57:06Z) - An End-to-End Network for Co-Saliency Detection in One Single Image [47.35448093528382]
単一の画像内の共分散検出は、まだ十分に対処されていない一般的な視覚問題である。
本研究では、バックボーンネットと2つの分岐ネットからなる新しいエンドツーエンドのトレーニングネットワークを提案する。
本研究では,2,019個の自然画像のデータセットを各画像に共分散して構築し,提案手法の評価を行う。
論文 参考訳(メタデータ) (2019-10-25T16:00:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。