Temporal Tensor Transformation Network for Multivariate Time Series
Prediction
- URL: http://arxiv.org/abs/2001.01051v1
- Date: Sat, 4 Jan 2020 07:28:55 GMT
- Title: Temporal Tensor Transformation Network for Multivariate Time Series
Prediction
- Authors: Yuya Jeremy Ong, Mu Qiao and Divyesh Jadav
- Abstract summary: We present a novel deep learning architecture, known as Temporal Transformation Network, which transforms the original time series into a higher order.
This yields a new representation of the original multivariate time series, which enables the convolution kernel to extract complex and non-linear features as well as variable interactional signals from a relatively large temporal region.
Experimental results show that Temporal Transformation Network outperforms several state-of-the-art methods on window-based predictions across various tasks.
- Score: 1.2354076490479515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multivariate time series prediction has applications in a wide variety of
domains and is considered to be a very challenging task, especially when the
variables have correlations and exhibit complex temporal patterns, such as
seasonality and trend. Many existing methods suffer from strong statistical
assumptions, numerical issues with high dimensionality, manual feature
engineering efforts, and scalability. In this work, we present a novel deep
learning architecture, known as Temporal Tensor Transformation Network, which
transforms the original multivariate time series into a higher order of tensor
through the proposed Temporal-Slicing Stack Transformation. This yields a new
representation of the original multivariate time series, which enables the
convolution kernel to extract complex and non-linear features as well as
variable interactional signals from a relatively large temporal region.
Experimental results show that Temporal Tensor Transformation Network
outperforms several state-of-the-art methods on window-based predictions across
various tasks. The proposed architecture also demonstrates robust prediction
performance through an extensive sensitivity analysis.
Related papers
- Timer-XL: Long-Context Transformers for Unified Time Series Forecasting [67.83502953961505]
We present Timer-XL, a generative Transformer for unified time series forecasting.
Timer-XL achieves state-of-the-art performance across challenging forecasting benchmarks through a unified approach.
arXiv Detail & Related papers (2024-10-07T07:27:39Z) - PRformer: Pyramidal Recurrent Transformer for Multivariate Time Series Forecasting [82.03373838627606]
Self-attention mechanism in Transformer architecture requires positional embeddings to encode temporal order in time series prediction.
We argue that this reliance on positional embeddings restricts the Transformer's ability to effectively represent temporal sequences.
We present a model integrating PRE with a standard Transformer encoder, demonstrating state-of-the-art performance on various real-world datasets.
arXiv Detail & Related papers (2024-08-20T01:56:07Z) - DRFormer: Multi-Scale Transformer Utilizing Diverse Receptive Fields for Long Time-Series Forecasting [3.420673126033772]
We propose a dynamic tokenizer with a dynamic sparse learning algorithm to capture diverse receptive fields and sparse patterns of time series data.
Our proposed model, named DRFormer, is evaluated on various real-world datasets, and experimental results demonstrate its superiority compared to existing methods.
arXiv Detail & Related papers (2024-08-05T07:26:47Z) - Multi-resolution Time-Series Transformer for Long-term Forecasting [24.47302799009906]
We propose a novel framework, Multi-resolution Time-Series Transformer (MTST), for simultaneous modeling of diverse temporal patterns at different resolutions.
In contrast to many existing time-series transformers, we employ relative positional encoding, which is better suited for extracting periodic components at different scales.
arXiv Detail & Related papers (2023-11-07T17:18:52Z) - TACTiS-2: Better, Faster, Simpler Attentional Copulas for Multivariate Time Series [57.4208255711412]
Building on copula theory, we propose a simplified objective for the recently-introduced transformer-based attentional copulas (TACTiS)
We show that the resulting model has significantly better training dynamics and achieves state-of-the-art performance across diverse real-world forecasting tasks.
arXiv Detail & Related papers (2023-10-02T16:45:19Z) - Stecformer: Spatio-temporal Encoding Cascaded Transformer for
Multivariate Long-term Time Series Forecasting [11.021398675773055]
We propose a complete solution to address problems in terms of feature extraction and target prediction.
For extraction, we design an efficient-temporal encoding extractor including a semi-adaptive graph to acquire sufficient-temporal information.
For prediction, we propose a Cascaded De Predictor (CDP) to strengthen the correlation between different intervals.
arXiv Detail & Related papers (2023-05-25T13:00:46Z) - Learning the Evolutionary and Multi-scale Graph Structure for
Multivariate Time Series Forecasting [50.901984244738806]
We show how to model the evolutionary and multi-scale interactions of time series.
In particular, we first provide a hierarchical graph structure cooperated with the dilated convolution to capture the scale-specific correlations.
A unified neural network is provided to integrate the components above to get the final prediction.
arXiv Detail & Related papers (2022-06-28T08:11:12Z) - Multi-scale Attention Flow for Probabilistic Time Series Forecasting [68.20798558048678]
We propose a novel non-autoregressive deep learning model, called Multi-scale Attention Normalizing Flow(MANF)
Our model avoids the influence of cumulative error and does not increase the time complexity.
Our model achieves state-of-the-art performance on many popular multivariate datasets.
arXiv Detail & Related papers (2022-05-16T07:53:42Z) - Synergetic Learning of Heterogeneous Temporal Sequences for
Multi-Horizon Probabilistic Forecasting [48.8617204809538]
We propose Variational Synergetic Multi-Horizon Network (VSMHN), a novel deep conditional generative model.
To learn complex correlations across heterogeneous sequences, a tailored encoder is devised to combine the advances in deep point processes models and variational recurrent neural networks.
Our model can be trained effectively using variational inference and generates predictions with Monte-Carlo simulation.
arXiv Detail & Related papers (2021-01-31T11:00:55Z) - LAVARNET: Neural Network Modeling of Causal Variable Relationships for
Multivariate Time Series Forecasting [18.89688469820947]
A novel neural network-based architecture is proposed, termed LAgged VAriable NETwork.
It intrinsically estimates the importance of latent lagged variables and combines high dimensional representations of them to predict future values time series.
Our model is compared with other baseline and state of the art neural network architectures on one simulated data set and four real data sets from meteorology, music, solar activity, finance areas.
arXiv Detail & Related papers (2020-09-02T10:57:28Z) - Pay Attention to Evolution: Time Series Forecasting with Deep
Graph-Evolution Learning [33.79957892029931]
This work presents a novel neural network architecture for time-series forecasting.
We named our method Recurrent Graph Evolution Neural Network (ReGENN)
An extensive set of experiments was conducted comparing ReGENN with dozens of ensemble methods and classical statistical ones.
arXiv Detail & Related papers (2020-08-28T20:10:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.