Model Predictive Control for Finite Input Systems using the D-Wave
Quantum Annealer
- URL: http://arxiv.org/abs/2001.01400v2
- Date: Mon, 27 Jan 2020 01:53:50 GMT
- Title: Model Predictive Control for Finite Input Systems using the D-Wave
Quantum Annealer
- Authors: Daisuke Inoue, Hiroaki Yoshida
- Abstract summary: The D-Wave quantum annealer has emerged as a novel computational architecture that is attracting significant interest.
We present a model predictive control (MPC) algorithm using a quantum annealer.
Two practical applications, namely stabilization of a spring-mass-damper system and dynamic audio quantization, are demonstrated.
- Score: 4.83782736808514
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The D-Wave quantum annealer has emerged as a novel computational architecture
that is attracting significant interest, but there have been only a few
practical algorithms exploiting the power of quantum annealers. Here we present
a model predictive control (MPC) algorithm using a quantum annealer for a
system allowing a finite number of input values. Such an MPC problem is
classified as a non-deterministic polynomial-time-hard combinatorial problem,
and thus real-time sequential optimization is difficult to obtain with
conventional computational systems. We circumvent this difficulty by converting
the original MPC problem into a quadratic unconstrained binary optimization
problem, which is then solved by the D-Wave quantum annealer. Two practical
applications, namely stabilization of a spring-mass-damper system and dynamic
audio quantization, are demonstrated. For both, the D-Wave method exhibits
better performance than the classical simulated annealing method. Our results
suggest new applications of quantum annealers in the direction of dynamic
control problems.
Related papers
- Enabling Large-Scale and High-Precision Fluid Simulations on Near-Term Quantum Computers [17.27937804402152]
Quantum computational fluid dynamics (QCFD) offers a promising alternative to classical computational fluid dynamics (CFD)
This paper introduces a comprehensive QCFD method, including an iterative method "Iterative-QLS" that suppresses error in quantum linear solver.
We implement our method on a superconducting quantum computer, demonstrating successful simulations of steady Poiseuille flow and unsteady acoustic wave propagation.
arXiv Detail & Related papers (2024-06-10T07:21:23Z) - Formulation and evaluation of ocean dynamics problems as optimization problems for quantum annealing machines [0.0]
Recent advancements in quantum computing suggest the potential to revolutionize computational algorithms across various scientific domains.
Quantum computation is so different from classical computation that suitable frameworks to represent oceanic and atmospheric dynamics are yet to be explored.
arXiv Detail & Related papers (2024-05-20T04:55:32Z) - Effectiveness of quantum annealing for continuous-variable optimization [0.0]
We test the performance of quantum annealing applied to a one-dimensional continuous-variable function with a rugged energy landscape.
We conclude that the hardware realization of quantum annealing has the potential to significantly outperform the best classical algorithms.
arXiv Detail & Related papers (2023-05-11T07:59:19Z) - Quantum Annealing for Single Image Super-Resolution [86.69338893753886]
We propose a quantum computing-based algorithm to solve the single image super-resolution (SISR) problem.
The proposed AQC-based algorithm is demonstrated to achieve improved speed-up over a classical analog while maintaining comparable SISR accuracy.
arXiv Detail & Related papers (2023-04-18T11:57:15Z) - Trainable Variational Quantum-Multiblock ADMM Algorithm for Generation
Scheduling [0.0]
This paper proposes a two-loop quantum solution algorithm for generation scheduling by quantum computing, machine learning, and distributed optimization.
The aim is to facilitate noisy employing near-term quantum machines with a limited number of qubits to solve practical power system problems.
arXiv Detail & Related papers (2023-03-28T21:31:39Z) - Adiabatic Quantum Computing for Multi Object Tracking [170.8716555363907]
Multi-Object Tracking (MOT) is most often approached in the tracking-by-detection paradigm, where object detections are associated through time.
As these optimization problems are often NP-hard, they can only be solved exactly for small instances on current hardware.
We show that our approach is competitive compared with state-of-the-art optimization-based approaches, even when using of-the-shelf integer programming solvers.
arXiv Detail & Related papers (2022-02-17T18:59:20Z) - Simulating the Mott transition on a noisy digital quantum computer via
Cartan-based fast-forwarding circuits [62.73367618671969]
Dynamical mean-field theory (DMFT) maps the local Green's function of the Hubbard model to that of the Anderson impurity model.
Quantum and hybrid quantum-classical algorithms have been proposed to efficiently solve impurity models.
This work presents the first computation of the Mott phase transition using noisy digital quantum hardware.
arXiv Detail & Related papers (2021-12-10T17:32:15Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
The famous least squares Monte Carlo (LSM) algorithm combines linear least square regression with Monte Carlo simulation to approximately solve problems in optimal stopping theory.
We propose a quantum LSM based on quantum access to a process, on quantum circuits for computing the optimal stopping times, and on quantum techniques for Monte Carlo.
arXiv Detail & Related papers (2021-11-30T12:21:41Z) - Quantum algorithms for quantum dynamics: A performance study on the
spin-boson model [68.8204255655161]
Quantum algorithms for quantum dynamics simulations are traditionally based on implementing a Trotter-approximation of the time-evolution operator.
variational quantum algorithms have become an indispensable alternative, enabling small-scale simulations on present-day hardware.
We show that, despite providing a clear reduction of quantum gate cost, the variational method in its current implementation is unlikely to lead to a quantum advantage.
arXiv Detail & Related papers (2021-08-09T18:00:05Z) - Electronic structure with direct diagonalization on a D-Wave quantum
annealer [62.997667081978825]
This work implements the general Quantum Annealer Eigensolver (QAE) algorithm to solve the molecular electronic Hamiltonian eigenvalue-eigenvector problem on a D-Wave 2000Q quantum annealer.
We demonstrate the use of D-Wave hardware for obtaining ground and electronically excited states across a variety of small molecular systems.
arXiv Detail & Related papers (2020-09-02T22:46:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.