Quantum sensing and control of spin state dynamics in the radical pair
mechanism
- URL: http://arxiv.org/abs/2001.01517v2
- Date: Thu, 30 Jul 2020 09:34:10 GMT
- Title: Quantum sensing and control of spin state dynamics in the radical pair
mechanism
- Authors: Amit Finkler and Durga Dasari
- Abstract summary: We analyze the role of a quantum sensor in detecting the spin dynamics of individual radical pairs in the presence of a weak magnetic field.
We show how quantum control methods can be used to set apart the dynamics of radical pair mechanism at various stages of the evolution.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Radical pairs and the dynamics they undergo are prevalent in many chemical
and biological systems. Specifically, it has been proposed that the radical
pair mechanism results from a relatively strong hyperfine interaction with its
intrinsic nuclear spin environment. While the existence of this mechanism is
undisputed, the nanoscale details remain to be experimentally shown. We analyze
here the role of a quantum sensor in detecting the spin dynamics
(non-Markovian) of individual radical pairs in the presence of a weak magnetic
field. We show how quantum control methods can be used to set apart the
dynamics of radical pair mechanism at various stages of the evolution. We
envisage these findings having far-reaching implications to the understanding
of the physical mechanism in magnetoreception and other bio-chemical processes
with a microscopic detail.
Related papers
- Low temperature decoherence dynamics in molecular spin systems using the Lindblad master equation [0.0]
At low temperatures, irreversible loss occurs due to ensemble dynamics facilitated by electronic-nuclear spin interactions.
We develop a combined open quantum systems and electronic structure theory capable of predicting trends in relaxation rates in molecular spin ensembles.
Our theory provides a framework to describe irreversible relaxation effects in molecular spin systems with applications in quantum information science, quantum sensing, molecular spintronics, and other spin systems dominated by spin-spin relaxation.
arXiv Detail & Related papers (2024-08-16T14:23:03Z) - Systematic study of rotational decoherence with a trapped-ion planar
rotor [0.4188114563181614]
Quantum rotors promise unique advantages for quantum sensing, quantum simulation, and quantum information processing.
For future applications of quantum rotors, understanding their dynamics in the presence of ambient environments and decoherence will be critical.
We present measurements of fundamental scaling relationships for decoherence of a quantum planar rotor realized with two trapped ions.
arXiv Detail & Related papers (2023-10-20T05:52:04Z) - Sensing of magnetic field effects in radical-pair reactions using a
quantum sensor [50.591267188664666]
Magnetic field effects (MFE) in certain chemical reactions have been well established in the last five decades.
We employ elaborate and realistic models of radical-pairs, considering its coupling to the local spin environment and the sensor.
For two model systems, we derive signals of MFE detectable even in the weak coupling regime between radical-pair and NV quantum sensor.
arXiv Detail & Related papers (2022-09-28T12:56:15Z) - Probing dynamics of a two-dimensional dipolar spin ensemble using single
qubit sensor [62.997667081978825]
We experimentally investigate individual spin dynamics in a two-dimensional ensemble of electron spins on the surface of a diamond crystal.
We show that this anomalously slow relaxation rate is due to the presence of strong dynamical disorder.
Our work paves the way towards microscopic study and control of quantum thermalization in strongly interacting disordered spin ensembles.
arXiv Detail & Related papers (2022-07-21T18:00:17Z) - Magnetic field effects in biology from the perspective of the radical
pair mechanism [0.0]
Weak magnetic fields can significantly influence various biological systems, including plants, animals, and humans.
The magnetic energies implicated in these effects are much smaller than thermal energies.
The radical pair mechanism involves the quantum dynamics of the electron and nuclear spins of naturally occurring transient radical molecules.
arXiv Detail & Related papers (2022-04-19T22:08:56Z) - Dispersive readout of molecular spin qudits [68.8204255655161]
We study the physics of a magnetic molecule described by a "giant" spin with multiple $d > 2$ spin states.
We derive an expression for the output modes in the dispersive regime of operation.
We find that the measurement of the cavity transmission allows to uniquely determine the spin state of the qudits.
arXiv Detail & Related papers (2021-09-29T18:00:09Z) - Relativistic aspects of orbital and magnetic anisotropies in the
chemical bonding and structure of lanthanide molecules [60.17174832243075]
We study the electronic and ro-vibrational states of heavy homonuclear lanthanide Er2 and Tm2 molecules by applying state-of-the-art relativistic methods.
We were able to obtain reliable spin-orbit and correlation-induced splittings between the 91 Er2 and 36 Tm2 electronic potentials dissociating to two ground-state atoms.
arXiv Detail & Related papers (2021-07-06T15:34:00Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum coherent spin-electric control in a molecular nanomagnet at
clock transitions [57.50861918173065]
Electrical control of spins at the nanoscale offers architectural advantages in spintronics.
Recent demonstrations of electric-field (E-field) sensitivities in molecular spin materials are tantalising.
E-field sensitivities reported so far are rather weak, prompting the question of how to design molecules with stronger spin-electric couplings.
arXiv Detail & Related papers (2020-05-03T09:27:31Z) - Quantum relative entropy shows singlet-triplet coherence is a resource
in the radical-pair mechanism of biological magnetic sensing [0.0]
Radical-pair reactions pertinent to biological magnetic field sensing are an ideal system for demonstrating the paradigm of quantum biology.
We introduce and explore a formal measure quantifying singlet-triplet coherence of radical-pairs using the concept of quantum relative entropy.
arXiv Detail & Related papers (2020-01-25T14:05:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.