Systematic study of rotational decoherence with a trapped-ion planar
rotor
- URL: http://arxiv.org/abs/2310.13293v1
- Date: Fri, 20 Oct 2023 05:52:04 GMT
- Title: Systematic study of rotational decoherence with a trapped-ion planar
rotor
- Authors: Neil Glikin, Benjamin A. Stickler, Ryan Tollefsen, Sara Mouradian,
Neha Yadav, Erik Urban, Klaus Hornberger, Hartmut Haeffner
- Abstract summary: Quantum rotors promise unique advantages for quantum sensing, quantum simulation, and quantum information processing.
For future applications of quantum rotors, understanding their dynamics in the presence of ambient environments and decoherence will be critical.
We present measurements of fundamental scaling relationships for decoherence of a quantum planar rotor realized with two trapped ions.
- Score: 0.4188114563181614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum rotors promise unique advantages for quantum sensing, quantum
simulation, and quantum information processing. At present, a variety of
systems ranging from nanoparticles to single molecules and trapped ions have
demonstrated detection and control of rotational motion in and near the quantum
regime. For future applications of quantum rotors, understanding their dynamics
in the presence of ambient environments and decoherence will be critical. While
other model quantum systems such as the harmonic oscillator have seen extensive
experimental study of their decoherence dynamics, such experiments remain an
open task for the rigid rotor. We present measurements of fundamental scaling
relationships for decoherence of a quantum planar rotor realized with two
trapped ions, and find excellent agreement with recent theoretical work.
Related papers
- Coherent spin-1 dynamics encoded in the rotational states of ultracold molecules [37.69303106863453]
rotational states of ultracold polar molecules possess long radiative lifetimes, microwave-domain coupling, and tunable dipolar interactions.
Coherent dynamics between pairs of rotational states have been used to demonstrate simple models of quantum magnetism and to manipulate quantum information stored as qubits.
arXiv Detail & Related papers (2024-12-19T17:35:57Z) - Generating and analyzing small-size datasets to explore physical observables in quantum Ising systems [0.0]
We propose a detailed analysis of datasets generated from simulations of two-dimensional quantum spin systems.
Our focus is on examining how fundamental physical properties, energy, magnetization, and entanglement entropy evolve under varying external transverse magnetic fields and system sizes.
arXiv Detail & Related papers (2024-11-12T10:31:09Z) - Spin Squeezing with Magnetic Dipoles [37.93140485169168]
Entanglement can improve the measurement precision of quantum sensors beyond the shot noise limit.
We take advantage of the magnetic dipole-dipole interaction native to most neutral atoms to realize spin-squeezed states.
We achieve 7.1 dB of metrologically useful squeezing using the finite-range spin exchange interactions in an erbium quantum gas microscope.
arXiv Detail & Related papers (2024-11-11T18:42:13Z) - A dissipation-induced superradiant transition in a strontium cavity-QED system [0.0]
In cavity quantum electrodynamics (QED), emitters and a resonator are coupled together to enable precise studies of quantum light-matter interactions.
Here we provide an observation of the continuous superradiant phase transition predicted in the CRF model using an ensemble of ultracold $88$Sr atoms.
Our observations are a first step towards finer control of driven-dissipative systems, which have been predicted to generate quantum states.
arXiv Detail & Related papers (2024-08-20T18:00:00Z) - Half Landau-Zener ramp to a quantum phase transition in a dissipative single spin sodel [0.0]
We study the dynamics of a single spin coupled to a bosonic bath at zero temperature driven by a ramp of the bias field.
We derive a scaling law between the residual magnetization and the ramp speed.
arXiv Detail & Related papers (2024-08-20T13:58:36Z) - Faster entanglement driven by quantum resonance in many-body kicked rotors [0.0]
Quantum resonance in the paradigmatic kicked rotor system is a purely quantum effect that ignores the state of underlying classical chaos.
In this work, it is shown that quantum resonance leads to superlinear entanglement production.
arXiv Detail & Related papers (2024-05-10T17:35:16Z) - Unveiling the Quantum Toroidal Dipole in Nanosystems: Quantization,
Interaction Energy, and Measurement [44.99833362998488]
We investigate a quantum particle confined to a toroidal surface in the presence of a filiform current along the system's rotational axis.
Our analysis reveals that the interaction between the particle and the current induces a non-zero toroidal dipole in the particle's stationary states.
arXiv Detail & Related papers (2024-01-26T13:31:32Z) - Quantum criticality in chains of planar rotors with dipolar interactions [0.0]
By exploring the ground state from weakly to strongly interacting rotors, we find the occurrence of a quantum phase transition between a disordered and a dipole-ordered quantum state.
We show that the nature of the ordered state changes from ferroelectric to antiferroelectric when the relative orientation of the rotor planes varies.
The observed quantum phase transitions are characterized by critical exponents and central charges which reveal different universality classes ranging from that of the (1+1)D Ising model to the 2D classical XY model.
arXiv Detail & Related papers (2024-01-05T16:29:36Z) - Amplification of quantum transfer and quantum ratchet [56.47577824219207]
We study a model of amplification of quantum transfer and making it directed which we call the quantum ratchet model.
The ratchet effect is achieved in the quantum control model with dissipation and sink, where the Hamiltonian depends on vibrations in the energy difference synchronized with transitions between energy levels.
Amplitude and frequency of the oscillating vibron together with the dephasing rate are the parameters of the quantum ratchet which determine its efficiency.
arXiv Detail & Related papers (2023-12-31T14:04:43Z) - Enhanced optomechanical interaction in the unbalanced interferometer [40.96261204117952]
Quantum optomechanical systems enable the study of fundamental questions on quantum nature of massive objects.
Here we propose a modification of the Michelson-Sagnac interferometer, which allows to boost the optomechanical coupling strength.
arXiv Detail & Related papers (2023-05-11T14:24:34Z) - Thermal masses and trapped-ion quantum spin models: a self-consistent approach to Yukawa-type interactions in the $λ\!φ^4$ model [44.99833362998488]
A quantum simulation of magnetism in trapped-ion systems makes use of the crystal vibrations to mediate pairwise interactions between spins.
These interactions can be accounted for by a long-wavelength relativistic theory, where the phonons are described by a coarse-grained Klein-Gordon field.
We show that thermal effects, which can be controlled by laser cooling, can unveil this flow through the appearance of thermal masses in interacting QFTs.
arXiv Detail & Related papers (2023-05-10T12:59:07Z) - Characterization and Coherent Control of Spin Qubits with Modulated
Electron Beam and Resonator [0.0]
coherent dynamics and control of spin qubits are essential requirements for quantum technology.
A prominent challenge for coherent control of a spin qubit in a set of qubits is the destructive effect of the applied magnetic field on the coherent dynamics of neighbouring qubits.
We propose a novel scheme to characterize the coherent dynamics of these quantum systems and to coherently control them using a magnetic field.
arXiv Detail & Related papers (2023-03-31T10:29:26Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - Harmonic dual dressing of spin one-half systems [0.0]
Controlled modifications of the quantum magnetic response are produced in dressed systems by a high frequency, strong and not-resonant electromagnetic field.
The secondary field enables a fine tuning of the qubit response, with control parameters amplitude, harmonic content, spatial orientation and phase relation.
arXiv Detail & Related papers (2021-08-18T14:36:10Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Quantum interferometry for rotation sensing in an optical microresonator [0.6645111950779664]
We realize an effective interferometry with SU(2) algebraic structure.
We find that the estimate accuracy for the angular velocity of the rotation can achieve and even break the Heisenberg limit.
We hope that our investigation will be useful in the design of a quantum gyroscope based on spinning resonators.
arXiv Detail & Related papers (2021-03-18T03:58:13Z) - Quantum simulation of antiferromagnetic Heisenberg chain with
gate-defined quantum dots [0.0]
Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model.
We show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum-dot array.
arXiv Detail & Related papers (2021-03-15T09:45:02Z) - Non-equilibrium quantum domain reconfiguration dynamics in a
two-dimensional electronic crystal: experiments and quantum simulations [0.0]
We study quantum domain reconfiguration dynamics in the electronic superlattice of a quantum material.
The crossover from temperature to quantum fluctuation dominated dynamics in the context of environmental noise is investigated.
The results are important for understanding the origin of the retention time in non-volatile memory devices.
arXiv Detail & Related papers (2021-03-12T15:22:10Z) - Simulation of Collective Neutrino Oscillations on a Quantum Computer [117.44028458220427]
We present the first simulation of a small system of interacting neutrinos using current generation quantum devices.
We introduce a strategy to overcome limitations in the natural connectivity of the qubits and use it to track the evolution of entanglement in real-time.
arXiv Detail & Related papers (2021-02-24T20:51:25Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
We experimentally investigate the dynamics of quantum scrambling on a 53-qubit quantum processor.
We show that while operator spreading is captured by an efficient classical model, operator entanglement requires exponentially scaled computational resources to simulate.
arXiv Detail & Related papers (2021-01-21T22:18:49Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Spin current generation and control in carbon nanotubes by combining
rotation and magnetic field [78.72753218464803]
We study the quantum dynamics of ballistic electrons in rotating carbon nanotubes in the presence of a uniform magnetic field.
By suitably combining the applied magnetic field intensity and rotation speed, one can tune one of the currents to zero while keeping the other one finite, giving rise to a spin current generator.
arXiv Detail & Related papers (2020-01-20T08:54:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.