Modeling Historical AIS Data For Vessel Path Prediction: A Comprehensive
Treatment
- URL: http://arxiv.org/abs/2001.01592v3
- Date: Sun, 9 Jan 2022 21:45:41 GMT
- Title: Modeling Historical AIS Data For Vessel Path Prediction: A Comprehensive
Treatment
- Authors: Enmei Tu, Guanghao Zhang, Shangbo Mao, Lily Rachmawati and Guang-Bin
Huang
- Abstract summary: Automatic Identification System (AIS) plays an important role because it recently has been made compulsory for large international commercial vessels.
AIS data based vessel path prediction is a promising way in future maritime intelligence.
We propose a comprehensive framework to model massive historical AIS trajectory segments for accurate vessel path prediction.
- Score: 5.0283137924084205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The prosperity of artificial intelligence has aroused intensive interests in
intelligent/autonomous navigation, in which path prediction is a key
functionality for decision supports, e.g. route planning, collision warning,
and traffic regulation. For maritime intelligence, Automatic Identification
System (AIS) plays an important role because it recently has been made
compulsory for large international commercial vessels and is able to provide
nearly real-time information of the vessel. Therefore AIS data based vessel
path prediction is a promising way in future maritime intelligence. However,
real-world AIS data collected online are just highly irregular trajectory
segments (AIS message sequences) from different types of vessels and
geographical regions, with possibly very low data quality. So even there are
some works studying how to build a path prediction model using historical AIS
data, but still, it is a very challenging problem. In this paper, we propose a
comprehensive framework to model massive historical AIS trajectory segments for
accurate vessel path prediction. Experimental comparisons with existing popular
methods are made to validate the proposed approach and results show that our
approach could outperform the baseline methods by a wide margin.
Related papers
- Improved context-sensitive transformer model for inland vessel trajectory prediction [2.287415292857564]
Physics-related and model-based vessel trajectory prediction is highly accurate but requires specific knowledge of the vessel under consideration.
Machine learning-based trajectory prediction models do not require expert knowledge, but rely on the implicit knowledge extracted from massive amounts of data.
Several deep learning (DL) methods for vessel trajectory prediction have recently been suggested.
arXiv Detail & Related papers (2024-06-04T20:39:14Z) - Deep Learning for Trajectory Data Management and Mining: A Survey and Beyond [58.63558696061679]
Trajectory computing is crucial in various practical applications such as location services, urban traffic, and public safety.
We present a review of development and recent advances in deep learning for trajectory computing (DL4Traj)
Notably, we encapsulate recent advancements in Large Language Models (LLMs) that hold potential to augment trajectory computing.
arXiv Detail & Related papers (2024-03-21T05:57:27Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Learning to Predict Navigational Patterns from Partial Observations [63.04492958425066]
This paper presents the first self-supervised learning (SSL) method for learning to infer navigational patterns in real-world environments from partial observations only.
We demonstrate how to infer global navigational patterns by fitting a maximum likelihood graph to the DSLP field.
Experiments show that our SSL model outperforms two SOTA supervised lane graph prediction models on the nuScenes dataset.
arXiv Detail & Related papers (2023-04-26T02:08:46Z) - TrAISformer -- A Transformer Network with Sparse Augmented Data
Representation and Cross Entropy Loss for AIS-based Vessel Trajectory
Prediction [9.281166430457647]
Vessel trajectory prediction plays a pivotal role in numerous maritime applications and services.
forecasting vessel trajectory using AIS data remains challenging, even for modern machine learning techniques.
We introduce a discrete, high-dimensional representation of AIS data and a new loss function designed to explicitly address heterogeneous and multimodality.
We report experimental results on real, publicly available AIS data. TrAISformer significantly outperforms state-of-the-art methods, with an average prediction performance below 10 nautical miles up to 10 hours.
arXiv Detail & Related papers (2021-09-08T22:44:33Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Injecting Knowledge in Data-driven Vehicle Trajectory Predictors [82.91398970736391]
Vehicle trajectory prediction tasks have been commonly tackled from two perspectives: knowledge-driven or data-driven.
In this paper, we propose to learn a "Realistic Residual Block" (RRB) which effectively connects these two perspectives.
Our proposed method outputs realistic predictions by confining the residual range and taking into account its uncertainty.
arXiv Detail & Related papers (2021-03-08T16:03:09Z) - Deep Learning Methods for Vessel Trajectory Prediction based on
Recurrent Neural Networks [13.193080011901381]
We propose sequence-to-sequence vessel trajectory prediction models based on encoder-decoder recurrent neural networks (RNNs)
The proposed architecture combines Long Short-Term Memory (LSTM) RNNs for sequence modeling to encode the observed data and generate future predictions with different intermediate aggregation layers to capture space-time dependencies in sequential data.
Experimental results on vessel trajectories from an AIS dataset made freely available by the Danish Maritime Authority show the effectiveness of deep-learning methods for trajectory prediction based on sequence-to-sequence neural networks.
arXiv Detail & Related papers (2021-01-07T11:05:47Z) - The Unsupervised Method of Vessel Movement Trajectory Prediction [1.2617078020344619]
This article presents an unsupervised method of ship movement trajectory prediction.
It represents the data in a three-dimensional space which consists of time difference between points, the scaled error distance between the tested and its predicted forward and backward locations, and the space-time angle.
Unlike most statistical learning or deep learning methods, the proposed clustering-based trajectory reconstruction method does not require computationally expensive model training.
arXiv Detail & Related papers (2020-07-27T17:45:21Z) - Enhance the performance of navigation: A two-stage machine learning
approach [13.674463804942837]
Real time traffic navigation is an important capability in smart transportation technologies.
In this paper, we adopt the ideas of ensemble learning and develop a two-stage machine learning model to give accurate navigation results.
arXiv Detail & Related papers (2020-04-02T08:55:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.