INTENT: Trajectory Prediction Framework with Intention-Guided Contrastive Clustering
- URL: http://arxiv.org/abs/2503.04952v1
- Date: Thu, 06 Mar 2025 20:31:11 GMT
- Title: INTENT: Trajectory Prediction Framework with Intention-Guided Contrastive Clustering
- Authors: Yihong Tang, Wei Ma,
- Abstract summary: In this study, we advocate that understanding and reasoning road agents' intention plays a key role in trajectory prediction tasks.<n>We present an efficient intention-guided trajectory prediction model that relies solely on information contained in the road agent's trajectory.
- Score: 13.079901321614937
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate trajectory prediction of road agents (e.g., pedestrians, vehicles) is an essential prerequisite for various intelligent systems applications, such as autonomous driving and robotic navigation. Recent research highlights the importance of environmental contexts (e.g., maps) and the "multi-modality" of trajectories, leading to increasingly complex model structures. However, real-world deployments require lightweight models that can quickly migrate and adapt to new environments. Additionally, the core motivations of road agents, referred to as their intentions, deserves further exploration. In this study, we advocate that understanding and reasoning road agents' intention plays a key role in trajectory prediction tasks, and the main challenge is that the concept of intention is fuzzy and abstract. To this end, we present INTENT, an efficient intention-guided trajectory prediction model that relies solely on information contained in the road agent's trajectory. Our model distinguishes itself from existing models in several key aspects: (i) We explicitly model road agents' intentions through contrastive clustering, accommodating the fuzziness and abstraction of human intention in their trajectories. (ii) The proposed INTENT is based solely on multi-layer perceptrons (MLPs), resulting in reduced training and inference time, making it very efficient and more suitable for real-world deployment. (iii) By leveraging estimated intentions and an innovative algorithm for transforming trajectory observations, we obtain more robust trajectory representations that lead to superior prediction accuracy. Extensive experiments on real-world trajectory datasets for pedestrians and autonomous vehicles demonstrate the effectiveness and efficiency of INTENT.
Related papers
- Multi-agent Traffic Prediction via Denoised Endpoint Distribution [23.767783008524678]
Trajectory prediction at high speeds requires historical features and interactions with surrounding entities.
We present the Denoised Distribution model for trajectory prediction.
Our approach significantly reduces model complexity and performance through endpoint information.
arXiv Detail & Related papers (2024-05-11T15:41:32Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - SEPT: Towards Efficient Scene Representation Learning for Motion
Prediction [19.111948522155004]
This paper presents SEPT, a modeling framework that leverages self-supervised learning to develop powerful models for complex traffic scenes.
experiments demonstrate that SEPT, without elaborate architectural design or feature engineering, achieves state-of-the-art performance on the Argoverse 1 and Argoverse 2 motion forecasting benchmarks.
arXiv Detail & Related papers (2023-09-26T21:56:03Z) - Smooth-Trajectron++: Augmenting the Trajectron++ behaviour prediction
model with smooth attention [0.0]
This work investigates the state-of-the-art trajectory forecasting model Trajectron++ which we enhance by incorporating a smoothing term in its attention module.
This attention mechanism mimics human attention inspired by cognitive science research indicating limits to attention switching.
We evaluate the performance of the resulting Smooth-Trajectron++ model and compare it to the original model on various benchmarks.
arXiv Detail & Related papers (2023-05-31T09:19:55Z) - Decentralized Vehicle Coordination: The Berkeley DeepDrive Drone Dataset and Consensus-Based Models [76.32775745488073]
We present a novel dataset and modeling framework designed to study motion planning in understructured environments.
We demonstrate that a consensus-based modeling approach can effectively explain the emergence of priority orders observed in our dataset.
arXiv Detail & Related papers (2022-09-19T05:06:57Z) - Class-Aware Attention for Multimodal Trajectory Prediction [0.7130302992490973]
We present a novel framework for multimodal trajectory prediction in autonomous driving.
Our model is able to run in real-time, achieving a high inference rate of over 300 FPS.
arXiv Detail & Related papers (2022-08-31T18:43:23Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
We propose a novel Transferable Graph Neural Network (T-GNN) framework, which jointly conducts trajectory prediction as well as domain alignment in a unified framework.
Specifically, a domain invariant GNN is proposed to explore the structural motion knowledge where the domain specific knowledge is reduced.
An attention-based adaptive knowledge learning module is further proposed to explore fine-grained individual-level feature representation for knowledge transfer.
arXiv Detail & Related papers (2022-03-09T21:08:47Z) - Divide-and-Conquer for Lane-Aware Diverse Trajectory Prediction [71.97877759413272]
Trajectory prediction is a safety-critical tool for autonomous vehicles to plan and execute actions.
Recent methods have achieved strong performances using Multi-Choice Learning objectives like winner-takes-all (WTA) or best-of-many.
Our work addresses two key challenges in trajectory prediction, learning outputs, and better predictions by imposing constraints using driving knowledge.
arXiv Detail & Related papers (2021-04-16T17:58:56Z) - Spatio-Temporal Graph Dual-Attention Network for Multi-Agent Prediction
and Tracking [23.608125748229174]
We propose a generic generative neural system for multi-agent trajectory prediction involving heterogeneous agents.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2021-02-18T02:25:35Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z) - Social-WaGDAT: Interaction-aware Trajectory Prediction via Wasserstein
Graph Double-Attention Network [29.289670231364788]
In this paper, we propose a generic generative neural system for multi-agent trajectory prediction.
We also employ an efficient kinematic constraint layer applied to vehicle trajectory prediction.
The proposed system is evaluated on three public benchmark datasets for trajectory prediction.
arXiv Detail & Related papers (2020-02-14T20:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.