Improved context-sensitive transformer model for inland vessel trajectory prediction
- URL: http://arxiv.org/abs/2406.02771v1
- Date: Tue, 4 Jun 2024 20:39:14 GMT
- Title: Improved context-sensitive transformer model for inland vessel trajectory prediction
- Authors: Kathrin Donandt, Karim Böttger, Dirk Söffker,
- Abstract summary: Physics-related and model-based vessel trajectory prediction is highly accurate but requires specific knowledge of the vessel under consideration.
Machine learning-based trajectory prediction models do not require expert knowledge, but rely on the implicit knowledge extracted from massive amounts of data.
Several deep learning (DL) methods for vessel trajectory prediction have recently been suggested.
- Score: 2.287415292857564
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Physics-related and model-based vessel trajectory prediction is highly accurate but requires specific knowledge of the vessel under consideration which is not always practical. Machine learning-based trajectory prediction models do not require expert knowledge, but rely on the implicit knowledge extracted from massive amounts of data. Several deep learning (DL) methods for vessel trajectory prediction have recently been suggested. The DL models developed typically only process information about the (dis)location of vessels defined with respect to a global reference system. In the context of inland navigation, this can be problematic, since without knowledge of the limited navigable space, irrealistic trajectories are likely to be determined. If spatial constraintes are introduced, e.g., by implementing an additional submodule to process map data, however, overall complexity increases. Instead of processing the vessel displacement information on the one hand and the spatial information on the other hand, the paper proposes the merging of both information. Here, fairway-related and navigation-related displacement information are used directly. In this way, the previously proposed context-sensitive Classification Transformer (CSCT) shows an improved spatial awareness. Additionally, the CSCT is adapted to assess the model uncertainty by enabling dropout during inference. This approach is trained on different inland waterways to analyze its generalizability. As the improved CSCT obtains lower prediction errors and enables to estimate the trustworthiness of each prediction, it is more suitable for safety-critical applications in inland navigation than previously developed models.
Related papers
- OPUS: Occupancy Prediction Using a Sparse Set [64.60854562502523]
We present a framework to simultaneously predict occupied locations and classes using a set of learnable queries.
OPUS incorporates a suite of non-trivial strategies to enhance model performance.
Our lightest model achieves superior RayIoU on the Occ3D-nuScenes dataset at near 2x FPS, while our heaviest model surpasses previous best results by 6.1 RayIoU.
arXiv Detail & Related papers (2024-09-14T07:44:22Z) - Incorporating Navigation Context into Inland Vessel Trajectory Prediction: A Gaussian Mixture Model and Transformer Approach [2.498836880652668]
In inland shipping, where vessel movement is constrained within fairways, navigational context information is indispensable.
In this contribution, a fused dataset of AIS and discharge measurements is applied to generate multi-modal distribution curves.
The incorporation of these distribution features improves prediction accuracy.
arXiv Detail & Related papers (2024-06-04T14:20:10Z) - JRDB-Traj: A Dataset and Benchmark for Trajectory Forecasting in Crowds [79.00975648564483]
Trajectory forecasting models, employed in fields such as robotics, autonomous vehicles, and navigation, face challenges in real-world scenarios.
This dataset provides comprehensive data, including the locations of all agents, scene images, and point clouds, all from the robot's perspective.
The objective is to predict the future positions of agents relative to the robot using raw sensory input data.
arXiv Detail & Related papers (2023-11-05T18:59:31Z) - Pre-training on Synthetic Driving Data for Trajectory Prediction [61.520225216107306]
We propose a pipeline-level solution to mitigate the issue of data scarcity in trajectory forecasting.
We adopt HD map augmentation and trajectory synthesis for generating driving data, and then we learn representations by pre-training on them.
We conduct extensive experiments to demonstrate the effectiveness of our data expansion and pre-training strategies.
arXiv Detail & Related papers (2023-09-18T19:49:22Z) - Learning to Predict Navigational Patterns from Partial Observations [63.04492958425066]
This paper presents the first self-supervised learning (SSL) method for learning to infer navigational patterns in real-world environments from partial observations only.
We demonstrate how to infer global navigational patterns by fitting a maximum likelihood graph to the DSLP field.
Experiments show that our SSL model outperforms two SOTA supervised lane graph prediction models on the nuScenes dataset.
arXiv Detail & Related papers (2023-04-26T02:08:46Z) - PEANUT: Predicting and Navigating to Unseen Targets [18.87376347895365]
Efficient ObjectGoal navigation (ObjectNav) in novel environments requires an understanding of the spatial and semantic regularities in environment layouts.
We present a method for learning these regularities by predicting the locations of unobserved objects from incomplete semantic maps.
Our prediction model is lightweight and can be trained in a supervised manner using a relatively small amount of passively collected data.
arXiv Detail & Related papers (2022-12-05T18:58:58Z) - Adaptive Trajectory Prediction via Transferable GNN [74.09424229172781]
We propose a novel Transferable Graph Neural Network (T-GNN) framework, which jointly conducts trajectory prediction as well as domain alignment in a unified framework.
Specifically, a domain invariant GNN is proposed to explore the structural motion knowledge where the domain specific knowledge is reduced.
An attention-based adaptive knowledge learning module is further proposed to explore fine-grained individual-level feature representation for knowledge transfer.
arXiv Detail & Related papers (2022-03-09T21:08:47Z) - Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
via Simple Data Augmentation [92.96204497841032]
Causal graphs (CGs) are compact representations of the knowledge of the data generating processes behind the data distributions.
We propose a model-agnostic data augmentation method that allows us to exploit the prior knowledge of the conditional independence (CI) relations.
We experimentally show that the proposed method is effective in improving the prediction accuracy, especially in the small-data regime.
arXiv Detail & Related papers (2021-02-27T06:13:59Z) - The Unsupervised Method of Vessel Movement Trajectory Prediction [1.2617078020344619]
This article presents an unsupervised method of ship movement trajectory prediction.
It represents the data in a three-dimensional space which consists of time difference between points, the scaled error distance between the tested and its predicted forward and backward locations, and the space-time angle.
Unlike most statistical learning or deep learning methods, the proposed clustering-based trajectory reconstruction method does not require computationally expensive model training.
arXiv Detail & Related papers (2020-07-27T17:45:21Z) - Modeling Historical AIS Data For Vessel Path Prediction: A Comprehensive
Treatment [5.0283137924084205]
Automatic Identification System (AIS) plays an important role because it recently has been made compulsory for large international commercial vessels.
AIS data based vessel path prediction is a promising way in future maritime intelligence.
We propose a comprehensive framework to model massive historical AIS trajectory segments for accurate vessel path prediction.
arXiv Detail & Related papers (2020-01-02T09:16:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.