論文の概要: Fair Active Learning
- arxiv url: http://arxiv.org/abs/2001.01796v5
- Date: Wed, 31 Mar 2021 14:39:26 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-14 02:10:59.429281
- Title: Fair Active Learning
- Title(参考訳): 公正なアクティブラーニング
- Authors: Hadis Anahideh and Abolfazl Asudeh and Saravanan Thirumuruganathan
- Abstract要約: 機械学習モデルが差別を伝播しないことが重要である。
アクティブラーニングは、ラベル付け予算内でオラクルを対話的にクエリすることで、正確な分類器を構築するための有望なアプローチである。
我々は、モデル精度と公平性のバランスをとるためにラベル付けすべきデータポイントを慎重に選択するフェアアクティブラーニングのためのアルゴリズムを設計する。
- 参考スコア(独自算出の注目度): 15.313223110223941
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning (ML) is increasingly being used in high-stakes applications
impacting society. Therefore, it is of critical importance that ML models do
not propagate discrimination. Collecting accurate labeled data in societal
applications is challenging and costly. Active learning is a promising approach
to build an accurate classifier by interactively querying an oracle within a
labeling budget. We design algorithms for fair active learning that carefully
selects data points to be labeled so as to balance model accuracy and fairness.
We demonstrate the effectiveness and efficiency of our proposed algorithms over
widely used benchmark datasets using demographic parity and equalized odds
notions of fairness.
- Abstract(参考訳): 機械学習(ML)は、社会に影響を及ぼす高度なアプリケーションでますます使われている。
したがって、MLモデルが差別を伝播しないことが重要である。
社会的なアプリケーションで正確なラベル付きデータの収集は困難でコストがかかる。
アクティブラーニングは、ラベリング予算内でoracleをインタラクティブにクエリすることで、正確な分類器を構築するための有望なアプローチである。
我々は、モデル精度と公平性のバランスをとるためにラベル付けすべきデータポイントを慎重に選択するフェアアクティブラーニングのためのアルゴリズムを設計する。
提案アルゴリズムの有効性と有効性について,人口統計値と等化確率を用いたベンチマークデータセットを用いて検証した。
関連論文リスト
- BAL: Balancing Diversity and Novelty for Active Learning [53.289700543331925]
多様な不確実なデータのバランスをとるために適応的なサブプールを構築する新しいフレームワークであるBalancing Active Learning (BAL)を導入する。
我々のアプローチは、広く認識されているベンチマークにおいて、確立されたすべてのアクティブな学習方法より1.20%優れています。
論文 参考訳(メタデータ) (2023-12-26T08:14:46Z) - Fair Active Learning in Low-Data Regimes [22.349886628823125]
機械学習の応用においては、社会的不平等の持続を避けるために公正性の確保が不可欠である。
本研究では,データスカース環境におけるバイアスの低減と精度向上という課題に対処する。
本稿では,後方サンプリングにインスパイアされた探索手法と,公平な分類サブルーチンを組み合わせた,革新的なアクティブラーニングフレームワークを提案する。
この枠組みは,確率の高い公正制約を満足しつつ,精度を最大化しながら,非常にデータ量の多い状況下で効果的に機能することが実証された。
論文 参考訳(メタデータ) (2023-12-13T23:14:55Z) - Learning to Rank for Active Learning via Multi-Task Bilevel Optimization [29.207101107965563]
データ取得のための学習代理モデルを用いて、ラベルのないインスタンスのバッチを選択することを目的とした、アクティブな学習のための新しいアプローチを提案する。
このアプローチにおける重要な課題は、ユーティリティ関数の入力の一部を構成するデータの歴史が時間とともに増大するにつれて、よく一般化する取得関数を開発することである。
論文 参考訳(メタデータ) (2023-10-25T22:50:09Z) - Active Learning with Combinatorial Coverage [0.0]
アクティブな学習は、ラベル付けするデータを選択するプロセスを自動化する機械学習の実践的な分野である。
現在の手法はデータラベリングの負担を軽減するのに有効であるが、モデルに強く依存する。
これにより、サンプルデータの新しいモデルへの転送が不可能になり、サンプリングバイアスの問題も発生した。
本稿では,これらの課題を克服するために,カバレッジを活用した能動的学習手法を提案する。
論文 参考訳(メタデータ) (2023-02-28T13:43:23Z) - Can Active Learning Preemptively Mitigate Fairness Issues? [66.84854430781097]
データセットバイアスは、機械学習における不公平な原因の1つです。
不確実性に基づくALで訓練されたモデルが保護クラスの決定において公平であるかどうかを検討する。
また,勾配反転(GRAD)やBALDなどのアルゴリズム的公正性手法の相互作用についても検討する。
論文 参考訳(メタデータ) (2021-04-14T14:20:22Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
連続学習は、入力されたデータが完全にラベル付けされていると仮定し、実際のアプリケーションでは適用できないかもしれない。
我々は、条件付き生成逆数ネットワーク(GAN)を用いた分類器を相互に学習するために、識別器整合(ORDisCo)を用いたディープオンライン再生を提案する。
ORDisCo が SSCL の様々な半教師付き学習ベンチマークデータセットで大幅なパフォーマンス向上を達成していることを示します。
論文 参考訳(メタデータ) (2021-01-02T09:04:14Z) - Fairness in Semi-supervised Learning: Unlabeled Data Help to Reduce
Discrimination [53.3082498402884]
機械学習の台頭における投機は、機械学習モデルによる決定が公正かどうかである。
本稿では,未ラベルデータのラベルを予測するための擬似ラベリングを含む,前処理フェーズにおける公平な半教師付き学習の枠組みを提案する。
偏見、分散、ノイズの理論的分解分析は、半教師付き学習における差別の異なる源とそれらが公平性に与える影響を浮き彫りにする。
論文 参考訳(メタデータ) (2020-09-25T05:48:56Z) - Fair Active Learning [15.313223110223941]
アクティブラーニングは、ラベル付け予算内でオラクルを対話的にクエリすることで、正確な分類器を構築するための有望なアプローチである。
我々は、モデル精度と公平性のバランスをとるためにラベル付けすべきデータポイントを慎重に選択するフェアアクティブラーニングのためのアルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-06-20T17:00:02Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Mining Implicit Entity Preference from User-Item Interaction Data for
Knowledge Graph Completion via Adversarial Learning [82.46332224556257]
本稿では,知識グラフ補完タスクにおけるユーザインタラクションデータを活用することで,新たな逆学習手法を提案する。
我々のジェネレータはユーザインタラクションデータから分離されており、識別器の性能を向上させるのに役立ちます。
利用者の暗黙の実体的嗜好を発見するために,グラフニューラルネットワークに基づく精巧な協調学習アルゴリズムを設計する。
論文 参考訳(メタデータ) (2020-03-28T05:47:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。