論文の概要: Learning to Rank for Active Learning via Multi-Task Bilevel Optimization
- arxiv url: http://arxiv.org/abs/2310.17044v1
- Date: Wed, 25 Oct 2023 22:50:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-10-27 22:54:10.476541
- Title: Learning to Rank for Active Learning via Multi-Task Bilevel Optimization
- Title(参考訳): マルチタスクバイレベル最適化によるアクティブラーニングのためのランク付け学習
- Authors: Zixin Ding, Si Chen, Ruoxi Jia, Yuxin Chen
- Abstract要約: データ取得のための学習代理モデルを用いて、ラベルのないインスタンスのバッチを選択することを目的とした、アクティブな学習のための新しいアプローチを提案する。
このアプローチにおける重要な課題は、ユーティリティ関数の入力の一部を構成するデータの歴史が時間とともに増大するにつれて、よく一般化する取得関数を開発することである。
- 参考スコア(独自算出の注目度): 29.207101107965563
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Active learning is a promising paradigm to reduce the labeling cost by
strategically requesting labels to improve model performance. However, existing
active learning methods often rely on expensive acquisition function to
compute, extensive modeling retraining and multiple rounds of interaction with
annotators. To address these limitations, we propose a novel approach for
active learning, which aims to select batches of unlabeled instances through a
learned surrogate model for data acquisition. A key challenge in this approach
is developing an acquisition function that generalizes well, as the history of
data, which forms part of the utility function's input, grows over time. Our
novel algorithmic contribution is a bilevel multi-task bilevel optimization
framework that predicts the relative utility -- measured by the validation
accuracy -- of different training sets, and ensures the learned acquisition
function generalizes effectively. For cases where validation accuracy is
expensive to evaluate, we introduce efficient interpolation-based surrogate
models to estimate the utility function, reducing the evaluation cost. We
demonstrate the performance of our approach through extensive experiments on
standard active classification benchmarks. By employing our learned utility
function, we show significant improvements over traditional techniques, paving
the way for more efficient and effective utility maximization in active
learning applications.
- Abstract(参考訳): アクティブラーニングは、モデルのパフォーマンスを改善するためにラベルを戦略的に要求することでラベリングコストを削減する、有望なパラダイムである。
しかし、既存のアクティブラーニング手法は、計算に高価な取得関数、広範囲なモデリングリトレーニング、アノテータとの複数ラウンドの相互作用に依存することが多い。
そこで本研究では,データ取得のための学習サーロゲートモデルを通じてラベルなしインスタンスのバッチを選択することを目的とした,アクティブラーニングのための新しい手法を提案する。
このアプローチの重要な課題は、ユーティリティ関数の入力の一部を形成するデータ履歴が時間とともに成長するにつれて、よく一般化した取得関数を開発することである。
提案手法は,異なるトレーニングセットの相対的有用性(検証精度によって測定される)を予測し,学習獲得関数が効果的に一般化することを保証する2レベルマルチタスク2レベル最適化フレームワークである。
検証精度を高く評価する場合には,効率的な補間ベースサロゲートモデルを導入し,有効性を推定し,評価コストを低減させる。
標準能動分類ベンチマークの広範な実験を通じて,本手法の性能を実証する。
学習したユーティリティ関数を利用することで、従来のテクニックよりも大幅に改善され、アクティブな学習アプリケーションにおいてより効率的で効果的なユーティリティ最大化の道が開かれた。
関連論文リスト
- MALADY: Multiclass Active Learning with Auction Dynamics on Graphs [0.9831489366502301]
効率的なアクティブラーニングのためのマルチクラスアクティブラーニングとオークション・ダイナミクス・オン・グラフ(MALADY)フレームワークを提案する。
我々は[24]における半教師付き学習のための類似性グラフ上のオークションダイナミクスアルゴリズムを一般化し、より一般的な最適化関数を組み込む。
また,オークションアルゴリズムの双対変数を用いて,分類器内の不確実性を測定し,異なるクラス間の決定境界付近のクエリを優先順位付けする,新しい能動的学習獲得関数を導入する。
論文 参考訳(メタデータ) (2024-09-14T16:20:26Z) - Learn from the Learnt: Source-Free Active Domain Adaptation via Contrastive Sampling and Visual Persistence [60.37934652213881]
ドメイン適応(DA)は、ソースドメインから関連するターゲットドメインへの知識伝達を容易にする。
本稿では、ソースデータフリーなアクティブドメイン適応(SFADA)という実用的なDAパラダイムについて検討する。
本稿では,学習者学習(LFTL)というSFADAの新たなパラダイムを紹介し,学習した学習知識を事前学習モデルから活用し,余分なオーバーヘッドを伴わずにモデルを積極的に反復する。
論文 参考訳(メタデータ) (2024-07-26T17:51:58Z) - Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning [55.96599486604344]
本稿では,Large Language Models (LLMs) の推論能力向上を目的とした,反復的な選好学習プロセスによるアプローチを提案する。
我々は、MCTS(Monte Carlo Tree Search)を用いて好みデータを反復的に収集し、そのルックアヘッド機能を利用して、インスタンスレベルの報酬をよりきめ細かいステップレベルの信号に分解する。
提案アルゴリズムはDPO(Direct Preference Optimization)を用いて,新たに生成されたステップレベルの優先度データを用いてLCMポリシーを更新する。
論文 参考訳(メタデータ) (2024-05-01T11:10:24Z) - Compute-Efficient Active Learning [0.0]
アクティブラーニングは、ラベルなしデータセットから最も有益なサンプルを選択することでラベリングコストを削減することを目的としている。
従来のアクティブな学習プロセスは、拡張性と効率を阻害する広範な計算資源を必要とすることが多い。
本稿では,大規模データセット上での能動的学習に伴う計算負担を軽減するための新しい手法を提案する。
論文 参考訳(メタデータ) (2024-01-15T12:32:07Z) - An Experimental Design Framework for Label-Efficient Supervised Finetuning of Large Language Models [55.01592097059969]
命令データセットの監視された微調整は、目覚ましいゼロショットの一般化能力を達成する上で重要な役割を担っている。
アクティブラーニングは、未ラベルのプールからアノテートするサンプルの有用なサブセットを特定するのに効果的である。
本研究では,能動学習の計算ボトルネックを回避するための実験設計を提案する。
論文 参考訳(メタデータ) (2024-01-12T16:56:54Z) - Perturbation-based Active Learning for Question Answering [25.379528163789082]
アクティブラーニング(AL)トレーニング戦略を活用することで、アノテーションコストの少ない質問応答(QA)モデルを構築することができる。
モデルを効果的に更新するために、最も情報に富んだ未ラベルのトレーニングデータを選択する。
論文 参考訳(メタデータ) (2023-11-04T08:07:23Z) - SURF: Semi-supervised Reward Learning with Data Augmentation for
Feedback-efficient Preference-based Reinforcement Learning [168.89470249446023]
我々は、大量のラベルなしサンプルとデータ拡張を利用する半教師付き報酬学習フレームワークSURFを提案する。
報奨学習にラベルのないサンプルを活用するために,選好予測器の信頼性に基づいてラベルのないサンプルの擬似ラベルを推定する。
本実験は, ロボット操作作業における嗜好に基づく手法のフィードバック効率を有意に向上させることを実証した。
論文 参考訳(メタデータ) (2022-03-18T16:50:38Z) - One-Round Active Learning [13.25385227263705]
1ラウンドのアクティブラーニングは、ラベル付け後の最高のユーティリティを達成するラベル付きデータポイントのサブセットを選択することを目的としている。
データユーティリティ関数の概念に基づく一括能動学習のための汎用フレームワークであるDULOを提案する。
以上の結果から,既存のアクティブな学習手法が複数ラウンドで成功する一方で,DULOは1ラウンドで常に優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2021-04-23T23:59:50Z) - Active Learning for Sequence Tagging with Deep Pre-trained Models and
Bayesian Uncertainty Estimates [52.164757178369804]
自然言語処理のためのトランスファーラーニングとアクティブラーニングの最近の進歩は、必要なアノテーション予算を大幅に削減する可能性を開く。
我々は,様々なベイズ不確実性推定手法とモンテカルロドロップアウトオプションの実験的研究を,アクティブ学習フレームワークで実施する。
また, 能動学習中にインスタンスを取得するためには, 完全サイズのトランスフォーマーを蒸留版に置き換えることにより, 計算性能が向上することを示した。
論文 参考訳(メタデータ) (2021-01-20T13:59:25Z) - Semi-supervised Batch Active Learning via Bilevel Optimization [89.37476066973336]
両レベル最適化によるデータ要約問題として,本手法を定式化する。
本手法は,ラベル付きサンプルがほとんど存在しない場合,レジーム内のキーワード検出タスクにおいて極めて有効であることを示す。
論文 参考訳(メタデータ) (2020-10-19T16:53:24Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。