論文の概要: Experimental Analysis of Reinforcement Learning Techniques for Spectrum
Sharing Radar
- arxiv url: http://arxiv.org/abs/2001.01799v2
- Date: Fri, 13 Mar 2020 23:24:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-14 02:18:46.144236
- Title: Experimental Analysis of Reinforcement Learning Techniques for Spectrum
Sharing Radar
- Title(参考訳): スペクトル共有レーダの強化学習技術に関する実験的研究
- Authors: Charles E. Thornton, R. Michael Buehrer, Anthony F. Martone, Kelly D.
Sherbondy
- Abstract要約: 本稿では,RL(Reinforcement Reinforcement)制御を,集束したスペクトル環境で動作するレーダシステムに適用するためのフレームワークについて述べる。
市販オフ・ザ・シェルフ(COTS)ハードウェアで実施した実験から,いくつかのRLアルゴリズムの有用性を比較した。
各RL技術は, 集束スペクトル環境において達成された収束性, レーダ検出性能, および100MHzスペクトルを非協調通信システムと共有する能力の観点から評価する。
- 参考スコア(独自算出の注目度): 8.852345851445829
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we first describe a framework for the application of
Reinforcement Learning (RL) control to a radar system that operates in a
congested spectral setting. We then compare the utility of several RL
algorithms through a discussion of experiments performed on Commercial
off-the-shelf (COTS) hardware. Each RL technique is evaluated in terms of
convergence, radar detection performance achieved in a congested spectral
environment, and the ability to share 100MHz spectrum with an uncooperative
communications system. We examine policy iteration, which solves an environment
posed as a Markov Decision Process (MDP) by directly solving for a stochastic
mapping between environmental states and radar waveforms, as well as Deep RL
techniques, which utilize a form of Q-Learning to approximate a parameterized
function that is used by the radar to select optimal actions. We show that RL
techniques are beneficial over a Sense-and-Avoid (SAA) scheme and discuss the
conditions under which each approach is most effective.
- Abstract(参考訳): 本研究ではまず,RL(Reinforcement Learning, 強化学習)制御を集中スペクトル環境で動作させるレーダーシステムに適用するためのフレームワークについて述べる。
次に,COTS(Commercial off-the-Shelf)ハードウェアで実施した実験の議論を通じて,複数のRLアルゴリズムの有用性を比較した。
各RL技術は, 集束スペクトル環境において達成された収束, レーダ検出性能, および100MHzスペクトルを非協調通信システムと共有する能力の観点から評価する。
本稿では, マルコフ決定過程(MDP)として表される環境を, 環境状態とレーダ波形の確率的マッピングを直接解き, かつQ-Learningの形式を用いて, レーダーが最適動作を選択するために使用するパラメータ化関数を近似するDeep RL手法について検討する。
Sense-and-Avoid(SAA)方式よりもRL手法が有効であることを示し、各手法が最も効果的である条件について議論する。
関連論文リスト
- Provably Efficient RLHF Pipeline: A Unified View from Contextual Bandits [59.30310692855397]
本稿では,RLHFパイプラインをコンテキスト的帯域幅の観点から統一したフレームワークを提案する。
RLHFプロセスは、(ポスト-)トレーニングとデプロイメントの2つのステージに分解します。
次に,各ステージごとに新しいアルゴリズムを開発し,統計的および計算効率の両面で有意な改善を示す。
論文 参考訳(メタデータ) (2025-02-11T02:36:01Z) - Unfolding Target Detection with State Space Model [8.493729039825332]
本稿では,CFAR検出器を状態空間モデルアーキテクチャに展開することにより,信号処理とディープラーニングを組み合わせた新しい手法を提案する。
CFARパイプラインを保存し、洗練された構成をトレーニング可能なパラメータにすることで、手動パラメータチューニングなしで高い検出性能を実現する。
その結果,提案手法の顕著な性能,CFARとその変種を検出率と誤警報率で10倍に向上させることができた。
論文 参考訳(メタデータ) (2024-10-30T07:43:18Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Learning to Sail Dynamic Networks: The MARLIN Reinforcement Learning
Framework for Congestion Control in Tactical Environments [53.08686495706487]
本稿では, 正確な並列化可能なエミュレーション環境を利用して, 戦術ネットワークの環境を再現するRLフレームワークを提案する。
衛星通信(SATCOM)とUHFワイドバンド(UHF)の無線リンク間のボトルネックリンク遷移を再現した条件下で、MARLINエージェントを訓練することにより、我々のRL学習フレームワークを評価する。
論文 参考訳(メタデータ) (2023-06-27T16:15:15Z) - Cross-Modal Contrastive Learning of Representations for Navigation using
Lightweight, Low-Cost Millimeter Wave Radar for Adverse Environmental
Conditions [1.9822346227538585]
学習に基づく自律ナビゲーションのためのシングルチップミリ波(mmWave)レーダの使用を提案する。
mmWaveレーダ信号はしばしば騒がしいため、表現のためのクロスモーダルコントラスト学習(CM-CLR)法を提案します。
対比学習によるエンドツーエンドの深部RLポリシーは、煙がいっぱいの迷路環境でロボットをうまくナビゲートしました。
論文 参考訳(メタデータ) (2021-01-10T11:21:17Z) - Ensemble and Random Collaborative Representation-Based Anomaly Detector
for Hyperspectral Imagery [133.83048723991462]
ハイパースペクトル異常検出(HAD)のための新しいアンサンブルおよびランダム共同表現型検出器(ERCRD)を提案する。
4つの実超スペクトルデータセットを用いた実験により,提案手法の精度と効率を10段階法と比較した。
論文 参考訳(メタデータ) (2021-01-06T11:23:51Z) - Depth Estimation from Monocular Images and Sparse Radar Data [93.70524512061318]
本稿では,ディープニューラルネットワークを用いた単眼画像とレーダ点の融合により,より正確な深度推定を実現する可能性を検討する。
レーダ測定で発生するノイズが,既存の融合法の適用を妨げている主要な理由の1つであることが判明した。
実験はnuScenesデータセット上で行われ、カメラ、レーダー、LiDARの記録を様々な場面と気象条件で記録する最初のデータセットの1つである。
論文 参考訳(メタデータ) (2020-09-30T19:01:33Z) - Efficient Online Learning for Cognitive Radar-Cellular Coexistence via
Contextual Thompson Sampling [9.805913930878]
本稿では,適応型レーダ伝送における逐次的,あるいはオンライン学習方式について述べる。
レーダの振舞いを駆動するために、線形コンテキスト帯域学習(CB)フレームワークが適用される。
提案したThompson Smpling (TS)アルゴリズムはより複雑なディープQ-Network (DQN) と競合する性能を維持していることを示す。
論文 参考訳(メタデータ) (2020-08-24T01:20:58Z) - Deep Reinforcement Learning Control for Radar Detection and Tracking in
Congested Spectral Environments [8.103366584285645]
レーダは、他のシステムとの相互干渉を軽減するために、その線形周波数変調(LFM)波形の帯域幅と中心周波数を変化させることを学ぶ。
DQLベースのアプローチを拡張して、ダブルQ-ラーニングとリカレントニューラルネットワークを組み込んで、ダブルディープリカレントQ-ネットワークを形成する。
実験結果から,提案手法は集束スペクトル環境におけるレーダ検出性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2020-06-23T17:21:28Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - A Reinforcement Learning based approach for Multi-target Detection in
Massive MIMO radar [12.982044791524494]
本稿では,MMIMO(Multiple input Multiple output)認知レーダ(CR)におけるマルチターゲット検出の問題点について考察する。
本稿では,未知の外乱統計の存在下での認知的マルチターゲット検出のための強化学習(RL)に基づくアルゴリズムを提案する。
定常環境と動的環境の両方において提案したRLアルゴリズムの性能を評価するため, 数値シミュレーションを行った。
論文 参考訳(メタデータ) (2020-05-10T16:29:06Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。