論文の概要: A Reinforcement Learning based approach for Multi-target Detection in
Massive MIMO radar
- arxiv url: http://arxiv.org/abs/2005.04708v4
- Date: Tue, 2 Mar 2021 11:35:32 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-05 02:14:47.059909
- Title: A Reinforcement Learning based approach for Multi-target Detection in
Massive MIMO radar
- Title(参考訳): 大規模MIMOレーダにおけるマルチターゲット検出のための強化学習に基づくアプローチ
- Authors: Aya Mostafa Ahmed, Alaa Alameer Ahmad, Stefano Fortunati, Aydin
Sezgin, Maria S. Greco, Fulvio Gini
- Abstract要約: 本稿では,MMIMO(Multiple input Multiple output)認知レーダ(CR)におけるマルチターゲット検出の問題点について考察する。
本稿では,未知の外乱統計の存在下での認知的マルチターゲット検出のための強化学習(RL)に基づくアルゴリズムを提案する。
定常環境と動的環境の両方において提案したRLアルゴリズムの性能を評価するため, 数値シミュレーションを行った。
- 参考スコア(独自算出の注目度): 12.982044791524494
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the problem of multi-target detection for massive
multiple input multiple output (MMIMO) cognitive radar (CR). The concept of CR
is based on the perception-action cycle that senses and intelligently adapts to
the dynamic environment in order to optimally satisfy a specific mission.
However, this usually requires a priori knowledge of the environmental model,
which is not available in most cases. We propose a reinforcement learning (RL)
based algorithm for cognitive multi-target detection in the presence of unknown
disturbance statistics. The radar acts as an agent that continuously senses the
unknown environment (i.e., targets and disturbance) and consequently optimizes
transmitted waveforms in order to maximize the probability of detection
($P_\mathsf{D}$) by focusing the energy in specific range-angle cells (i.e.,
beamforming). Furthermore, we propose a solution to the beamforming
optimization problem with less complexity than the existing methods. Numerical
simulations are performed to assess the performance of the proposed RL-based
algorithm in both stationary and dynamic environments. The RL based beamforming
is compared to the conventional omnidirectional approach with equal power
allocation and to adaptive beamforming with no RL. As highlighted by the
proposed numerical results, our RL-based beamformer outperforms both approaches
in terms of target detection performance. The performance improvement is even
particularly remarkable under environmentally harsh conditions such as low SNR,
heavy-tailed disturbance and rapidly changing scenarios.
- Abstract(参考訳): 本稿では,MMIMO(Multiple input Multiple output)認知レーダにおけるマルチターゲット検出の問題点について考察する。
CRの概念は、特定のミッションを最適に満たすために、動的環境を感知し、インテリジェントに適応する知覚行動サイクルに基づいている。
しかし、これは通常、ほとんどのケースでは利用できない環境モデルに関する事前知識を必要とする。
本稿では,未知の外乱統計の存在下での認知的マルチターゲット検出のための強化学習(RL)に基づくアルゴリズムを提案する。
レーダーは、未知の環境(すなわち標的と乱れ)を連続的に感知し、その結果、特定のレンジ角細胞(すなわちビームフォーミング)にエネルギーを集中させることで、検出の確率を最大化するために送信波形を最適化するエージェントとして機能する。
さらに,本手法よりも複雑度の低いビームフォーミング最適化問題の解法を提案する。
定常環境と動的環境の両方において提案したRLアルゴリズムの性能を評価するため, 数値シミュレーションを行った。
RLベースのビームフォーミングは、電力割り当てが等しい従来の全方向アプローチと、RLのない適応ビームフォーミングと比較される。
提案した数値結果で強調されるように,RLをベースとしたビームフォーマは,目標検出性能において両手法に優れる。
性能改善は、低SNR、重尾乱れ、急速に変化するシナリオなど、環境的に厳しい条件下では特に顕著である。
関連論文リスト
- A DRL-based Reflection Enhancement Method for RIS-assisted
Multi-receiver Communications [4.598835930908191]
複数のシングルリフレクションプロファイルの重ね合わせにより、分散ユーザのためのマルチリフレクションが可能になる。
周期的な単反射プロファイルの組み合わせは振幅/位相反作用をもたらし、各反射ビームの性能に影響を及ぼす。
本稿では,重なり合うプロファイルの誤アライメントに起因する遠距離場性能劣化を,二重反射最適化のシナリオに焦点をあてる。
論文 参考訳(メタデータ) (2023-09-11T09:43:59Z) - Provably Efficient Algorithm for Nonstationary Low-Rank MDPs [48.92657638730582]
我々は,非定常RLを,遷移カーネルと報酬の両方が時間とともに変化するような,エピソードな低ランクMDPで調査する最初の試みを行っている。
本稿では,パラメータ依存型ポリシ最適化アルゴリズムである Portal を提案し,パラメータフリー版である Ada-Portal の Portal をさらに改良する。
両アルゴリズムとも,非定常性が著しく大きくない限り, Portal と Ada-PortAL はサンプリング効率が良く,サンプリング複雑性を伴う平均的動的準最適ギャップを任意に小さく得ることを示す。
論文 参考訳(メタデータ) (2023-08-10T09:52:44Z) - Lyapunov-Driven Deep Reinforcement Learning for Edge Inference Empowered
by Reconfigurable Intelligent Surfaces [30.1512069754603]
本稿では,ワイヤレスエッジにおけるエネルギー効率,低レイテンシ,高精度な推論のための新しいアルゴリズムを提案する。
本稿では,新しいデータを一連のデバイスで連続的に生成・収集し,動的キューシステムを通じて処理するシナリオについて考察する。
論文 参考訳(メタデータ) (2023-05-18T12:46:42Z) - False Correlation Reduction for Offline Reinforcement Learning [115.11954432080749]
本稿では,実効的かつ理論的に証明可能なアルゴリズムであるオフラインRLに対するfalSe Correlation Reduction (SCORE)を提案する。
SCOREは、標準ベンチマーク(D4RL)において、様々なタスクにおいて3.1倍の高速化でSoTA性能を達成することを実証的に示す。
論文 参考訳(メタデータ) (2021-10-24T15:34:03Z) - Fast Distributionally Robust Learning with Variance Reduced Min-Max
Optimization [85.84019017587477]
分散的ロバストな教師付き学習は、現実世界のアプリケーションのための信頼性の高い機械学習システムを構築するための重要なパラダイムとして登場している。
Wasserstein DRSLを解くための既存のアルゴリズムは、複雑なサブプロブレムを解くか、勾配を利用するのに失敗する。
我々はmin-max最適化のレンズを通してwaserstein drslを再検討し、スケーラブルで効率的に実装可能な超勾配アルゴリズムを導出する。
論文 参考訳(メタデータ) (2021-04-27T16:56:09Z) - Distributed Multi-agent Meta Learning for Trajectory Design in Wireless
Drone Networks [151.27147513363502]
本稿では,動的無線ネットワーク環境で動作するエネルギー制約型ドローン群に対する軌道設計の問題点について検討する。
値ベース強化学習(VDRL)ソリューションとメタトレイン機構を提案する。
論文 参考訳(メタデータ) (2020-12-06T01:30:12Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
インテリジェントサーフェス(IRS)は、個々の散乱素子の位相シフトを制御して無線チャネルを再形成するために用いられる。
散乱素子の規模が大きいため、受動ビームフォーミングは一般に高い計算複雑性によって挑戦される。
本稿では、IRS支援無線ネットワークの性能向上のための機械学習(ML)アプローチに焦点を当てる。
論文 参考訳(メタデータ) (2020-08-29T08:39:43Z) - Deep Reinforcement Learning Control for Radar Detection and Tracking in
Congested Spectral Environments [8.103366584285645]
レーダは、他のシステムとの相互干渉を軽減するために、その線形周波数変調(LFM)波形の帯域幅と中心周波数を変化させることを学ぶ。
DQLベースのアプローチを拡張して、ダブルQ-ラーニングとリカレントニューラルネットワークを組み込んで、ダブルディープリカレントQ-ネットワークを形成する。
実験結果から,提案手法は集束スペクトル環境におけるレーダ検出性能を大幅に向上させることが示された。
論文 参考訳(メタデータ) (2020-06-23T17:21:28Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent Reflecting Surface (IRS)は、マルチアンテナアクセスポイント(AP)から受信機へのダウンリンク情報伝達を支援する有望な技術である。
我々は、APのアクティブビームフォーミングとIRSのパッシブビームフォーミングを共同最適化することで、APの送信電力を最小化する。
過去の経験からビームフォーミング戦略に適応できる深層強化学習(DRL)手法を提案する。
論文 参考訳(メタデータ) (2020-05-25T01:42:55Z) - Reconfigurable Intelligent Surface Assisted Multiuser MISO Systems
Exploiting Deep Reinforcement Learning [21.770491711632832]
再構成可能なインテリジェントサーフェス(RIS)は、将来の6世代(6G)無線通信システムにおいて重要な技術の一つとして推測されている。
本稿では, 基地局におけるビームフォーミング行列とRISにおける位相シフト行列の接合設計について, 深部強化学習(DRL)の最近の進歩を活用して検討する。
提案アルゴリズムは環境から学習し、その振る舞いを徐々に改善するだけでなく、2つの最先端ベンチマークと比較して同等の性能が得られる。
論文 参考訳(メタデータ) (2020-02-24T04:28:44Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。