Self learning robot using real-time neural networks
- URL: http://arxiv.org/abs/2001.02103v1
- Date: Mon, 6 Jan 2020 13:13:21 GMT
- Title: Self learning robot using real-time neural networks
- Authors: Chirag Gupta, Chikita Nangia, Chetan Kumar
- Abstract summary: This paper involves research, development and experimental analysis of a neural network implemented on a robot with an arm.
The neural network learns using the algorithms of Gradient Descent and Backpropagation.
Both the implementation and training of the neural network is done locally on the robot on a raspberry pi 3 so that its learning process is completely independent.
- Score: 7.347989843033033
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the advancements in high volume, low precision computational technology
and applied research on cognitive artificially intelligent heuristic systems,
machine learning solutions through neural networks with real-time learning has
seen an immense interest in the research community as well the industry. This
paper involves research, development and experimental analysis of a neural
network implemented on a robot with an arm through which evolves to learn to
walk in a straight line or as required. The neural network learns using the
algorithms of Gradient Descent and Backpropagation. Both the implementation and
training of the neural network is done locally on the robot on a raspberry pi 3
so that its learning process is completely independent. The neural network is
first tested on a custom simulator developed on MATLAB and then implemented on
the raspberry computer. Data at each generation of the evolving network is
stored, and analysis both mathematical and graphical is done on the data.
Impact of factors like the learning rate and error tolerance on the learning
process and final output is analyzed.
Related papers
- Mechanistic Neural Networks for Scientific Machine Learning [58.99592521721158]
We present Mechanistic Neural Networks, a neural network design for machine learning applications in the sciences.
It incorporates a new Mechanistic Block in standard architectures to explicitly learn governing differential equations as representations.
Central to our approach is a novel Relaxed Linear Programming solver (NeuRLP) inspired by a technique that reduces solving linear ODEs to solving linear programs.
arXiv Detail & Related papers (2024-02-20T15:23:24Z) - Hebbian Learning based Orthogonal Projection for Continual Learning of
Spiking Neural Networks [74.3099028063756]
We develop a new method with neuronal operations based on lateral connections and Hebbian learning.
We show that Hebbian and anti-Hebbian learning on recurrent lateral connections can effectively extract the principal subspace of neural activities.
Our method consistently solves for spiking neural networks with nearly zero forgetting.
arXiv Detail & Related papers (2024-02-19T09:29:37Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - Brain-Inspired Computational Intelligence via Predictive Coding [89.6335791546526]
Predictive coding (PC) has shown promising performance in machine intelligence tasks.
PC can model information processing in different brain areas, can be used in cognitive control and robotics.
arXiv Detail & Related papers (2023-08-15T16:37:16Z) - SpikiLi: A Spiking Simulation of LiDAR based Real-time Object Detection
for Autonomous Driving [0.0]
Spiking Neural Networks are a new neural network design approach that promises tremendous improvements in power efficiency, computation efficiency, and processing latency.
We first illustrate the applicability of spiking neural networks to a complex deep learning task namely Lidar based 3D object detection for automated driving.
arXiv Detail & Related papers (2022-06-06T20:05:17Z) - aSTDP: A More Biologically Plausible Learning [0.0]
We introduce approximate STDP, a new neural networks learning framework.
It uses only STDP rules for supervised and unsupervised learning.
It can make predictions or generate patterns in one model without additional configuration.
arXiv Detail & Related papers (2022-05-22T08:12:50Z) - Predictive Coding: Towards a Future of Deep Learning beyond
Backpropagation? [41.58529335439799]
The backpropagation of error algorithm used to train deep neural networks has been fundamental to the successes of deep learning.
Recent work has developed the idea into a general-purpose algorithm able to train neural networks using only local computations.
We show the substantially greater flexibility of predictive coding networks against equivalent deep neural networks.
arXiv Detail & Related papers (2022-02-18T22:57:03Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
We propose a population-based digital spiking neuromorphic processor in 180nm process technology with two hierarchy populations.
The proposed approach enables the developments of biomimetic neuromorphic system and various low-power, and low-latency inference processing applications.
arXiv Detail & Related papers (2022-01-19T09:26:34Z) - Malicious Network Traffic Detection via Deep Learning: An Information
Theoretic View [0.0]
We study how homeomorphism affects learned representation of a malware traffic dataset.
Our results suggest that although the details of learned representations and the specific coordinate system defined over the manifold of all parameters differ slightly, the functional approximations are the same.
arXiv Detail & Related papers (2020-09-16T15:37:44Z) - Neuromorphic Processing and Sensing: Evolutionary Progression of AI to
Spiking [0.0]
Spiking Neural Network algorithms hold the promise to implement advanced artificial intelligence using a fraction of the computations and power requirements.
This paper explains the theoretical workings of neuromorphic technologies based on spikes, and overviews the state-of-art in hardware processors, software platforms and neuromorphic sensing devices.
A progression path is paved for current machine learning specialists to update their skillset, as well as classification or predictive models from the current generation of deep neural networks to SNNs.
arXiv Detail & Related papers (2020-07-10T20:54:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.