Single artificial atoms in silicon emitting at telecom wavelengths
- URL: http://arxiv.org/abs/2001.02136v1
- Date: Tue, 7 Jan 2020 15:49:46 GMT
- Title: Single artificial atoms in silicon emitting at telecom wavelengths
- Authors: W. Redjem, A. Durand, T. Herzig, A. Benali, S. Pezzagna, J. Meijer, A.
Yu. Kuznetsov, H. S. Nguyen, S. Cueff, J.-M. G\'erard, I. Robert-Philip, B.
Gil, D. Caliste, P. Pochet, M. Abbarchi, V. Jacques, A. Dr\'eau and G.
Cassabois
- Abstract summary: We show the isolation of single optically-active point defects in a commercial silicon-on-insulator wafer implanted with carbon atoms.
These artificial atoms exhibit a bright, linearly polarized single-photon emission at telecom wavelengths suitable for long-distance propagation in optical fibers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given its unrivaled potential of integration and scalability, silicon is
likely to become a key platform for large-scale quantum technologies.
Individual electron-encoded artificial atoms either formed by impurities or
quantum dots have emerged as a promising solution for silicon-based integrated
quantum circuits. However, single qubits featuring an optical interface needed
for large-distance exchange of information have not yet been isolated in such a
prevailing semiconductor. Here we show the isolation of single optically-active
point defects in a commercial silicon-on-insulator wafer implanted with carbon
atoms. These artificial atoms exhibit a bright, linearly polarized
single-photon emission at telecom wavelengths suitable for long-distance
propagation in optical fibers. Our results demonstrate that despite its small
bandgap (~ 1.1 eV) a priori unfavorable towards such observation, silicon can
accommodate point defects optically isolable at single scale, like in
wide-bandgap semiconductors. This work opens numerous perspectives for
silicon-based quantum technologies, from integrated quantum photonics to
quantum communications and metrology.
Related papers
- Quantum bit with telecom wave-length emission from a simple defect in Si [4.1020458874018795]
Controlled creation and erasure of simple carbon interstitial defects have been successfully realised in silicon.
This defect has a stable structure near room temperature and emits in the wave-length where the signal loss is minimal.
We propose that a carbon interstitial can act as a quantum bit and may realize a spin-to-photon interface in CMOS-compatible platforms.
arXiv Detail & Related papers (2024-04-25T20:46:54Z) - All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Tunable quantum emitters on large-scale foundry silicon photonics [0.6165122427320179]
Integration of atomic quantum systems with single-emitter tunability remains an open challenge.
Here, we overcome this barrier through the hybrid integration of multiple InAs/InP microchiplets containing high-brightness infrared semiconductor quantum dot single photon emitters.
We achieve single photon emission via resonance fluorescence and scalable emission wavelength tunability through an electrically controlled non-volatile memory.
arXiv Detail & Related papers (2023-06-10T15:04:30Z) - Database of semiconductor point-defect properties for applications in
quantum technologies [54.17256385566032]
We have calculated over 50,000 point defects in various semiconductors including diamond, silicon carbide, and silicon.
We characterize the relevant optical and electronic properties of these defects, including formation energies, spin characteristics, transition dipole moments, zero-phonon lines.
We find 2331 composite defects which are stable in intrinsic silicon, which are then filtered to identify many new optically bright telecom spin qubit candidates and single-photon sources.
arXiv Detail & Related papers (2023-03-28T19:51:08Z) - Cavity-enhanced single artificial atoms in silicon [0.0]
We show controllable cavity-coupling of single G-centers in the telecommunications O-band.
Results illustrate the potential to achieve a deterministic spin-photon interface in silicon at telecommunication wavelengths.
arXiv Detail & Related papers (2023-02-20T19:05:04Z) - Indistinguishable photons from an artificial atom in silicon photonics [0.0]
We show a new type of indistinguishable photon source in silicon photonics based on an artificial atom.
A G center in a silicon waveguide can generate high-purity telecom-band single photons.
Results show that artificial atoms in silicon photonics can source highly coherent single photons suitable for photonic quantum networks and processors.
arXiv Detail & Related papers (2022-11-17T02:46:25Z) - On-chip single-photon subtraction by individual silicon vacancy centers
in a laser-written diamond waveguide [48.7576911714538]
Laser-written diamond photonics offers three-dimensional fabrication capabilities and large mode-field diameters matched to fiber optic technology.
To realize large cooperativities, we combine excitation of single shallow-implanted silicon vacancy centers via large numerical aperture optics.
We demonstrate single-emitter extinction measurements with a cooperativity of 0.153 and a beta factor of 13% yielding 15.3% as lower bound for the quantum efficiency of a single emitter.
arXiv Detail & Related papers (2021-11-02T16:01:15Z) - Detection of single W-centers in silicon [0.0]
Single intrinsic defects in silicon are linked to a tri-interstitial complex called W-center, with a zero-phonon line at 1.218$mu$m.
These results could set the stage for numerous quantum perspectives based on intrinsic luminescent defects in silicon.
arXiv Detail & Related papers (2021-08-09T18:19:13Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.