Detection of single W-centers in silicon
- URL: http://arxiv.org/abs/2108.04283v2
- Date: Thu, 28 Apr 2022 14:27:33 GMT
- Title: Detection of single W-centers in silicon
- Authors: Yoann Baron, Alrik Durand, P\'eter Udvarhelyi, Tobias Herzig, Mario
Khoury, S\'ebastien Pezzagna, Jan Meijer, Isabelle Robert-Philip, Marco
Abbarchi, Jean-Michel Hartmann, Vincent Mazzocchi, Jean-Michel G\'erard, Adam
Gali, Vincent Jacques, Guillaume Cassabois and Ana\"is Dr\'eau
- Abstract summary: Single intrinsic defects in silicon are linked to a tri-interstitial complex called W-center, with a zero-phonon line at 1.218$mu$m.
These results could set the stage for numerous quantum perspectives based on intrinsic luminescent defects in silicon.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Controlling the quantum properties of individual fluorescent defects in
silicon is a key challenge towards advanced quantum photonic devices prone to
scalability. Research efforts have so far focused on extrinsic defects based on
impurities incorporated inside the silicon lattice. Here we demonstrate the
detection of single intrinsic defects in silicon, which are linked to a
tri-interstitial complex called W-center, with a zero-phonon line at
1.218${\mu}$m. Investigating their single-photon emission properties reveals
new information about this common radiation damage center, such as its dipolar
orientation and its photophysics. We also identify its microscopic structure
and show that although this defect does not feature electronic states in the
bandgap, Coulomb interactions lead to excitonic radiative recombination below
the silicon bandgap. These results could set the stage for numerous quantum
perspectives based on intrinsic luminescent defects in silicon, such as quantum
integrated photonics, quantum communications and quantum sensing.
Related papers
- Discovery of T center-like quantum defects in silicon [2.5531148052301047]
Quantum technologies would benefit from the development of high performance quantum defects acting as single-photon emitters or spin-photon interface.
We find a series of defects formed by a group III element combined with carbon ((A-C)$rm _Si$ with A=B,Al,Ga,In,Tl) substituting on a silicon site.
These defects are analogous structurally, electronically and chemically to the well-known T center in silicon ((C-C-H)$rm_Si$) and their optical properties are mainly driven by an unpaired electron
arXiv Detail & Related papers (2024-05-08T16:02:29Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Quantum bit with telecom wave-length emission from a simple defect in Si [4.1020458874018795]
Controlled creation and erasure of simple carbon interstitial defects have been successfully realised in silicon.
This defect has a stable structure near room temperature and emits in the wave-length where the signal loss is minimal.
We propose that a carbon interstitial can act as a quantum bit and may realize a spin-to-photon interface in CMOS-compatible platforms.
arXiv Detail & Related papers (2024-04-25T20:46:54Z) - Database of semiconductor point-defect properties for applications in
quantum technologies [54.17256385566032]
We have calculated over 50,000 point defects in various semiconductors including diamond, silicon carbide, and silicon.
We characterize the relevant optical and electronic properties of these defects, including formation energies, spin characteristics, transition dipole moments, zero-phonon lines.
We find 2331 composite defects which are stable in intrinsic silicon, which are then filtered to identify many new optically bright telecom spin qubit candidates and single-photon sources.
arXiv Detail & Related papers (2023-03-28T19:51:08Z) - Midgap state requirements for optically active quantum defects [0.0]
Optically active quantum defects play an important role in quantum sensing, computing, and communication.
It is commonly assumed that only quantum defects introducing levels well within the band gap and far from the band edges are of interest for quantum technologies.
We show that optically active defects with energy levels close to the band edges can display similar properties.
arXiv Detail & Related papers (2023-02-21T16:07:04Z) - Single quantum emitters with spin ground states based on Cl bound
excitons in ZnSe [55.41644538483948]
We show a new type of single photon emitter with potential electron spin qubit based on Cl impurities inSe.
Results suggest single Cl impurities are suitable as single photon source with potential photonic interface.
arXiv Detail & Related papers (2022-03-11T04:29:21Z) - Review on coherent quantum emitters in hexagonal boron nitride [91.3755431537592]
I discuss the state-of-the-art of defect centers in hexagonal boron nitride with a focus on optically coherent defect centers.
The spectral transition linewidth remains unusually narrow even at room temperature.
The field is put into a broad perspective with impact on quantum technology such as quantum optics, quantum photonics as well as spin optomechanics.
arXiv Detail & Related papers (2022-01-31T12:49:43Z) - Room temperature single-photon emitters in silicon nitride [97.75917079876487]
We report on the first-time observation of room-temperature single-photon emitters in silicon nitride (SiN) films grown on silicon dioxide substrates.
As SiN has recently emerged as one of the most promising materials for integrated quantum photonics, the proposed platform is suitable for scalable fabrication of quantum on-chip devices.
arXiv Detail & Related papers (2021-04-16T14:20:11Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Single artificial atoms in silicon emitting at telecom wavelengths [0.0]
We show the isolation of single optically-active point defects in a commercial silicon-on-insulator wafer implanted with carbon atoms.
These artificial atoms exhibit a bright, linearly polarized single-photon emission at telecom wavelengths suitable for long-distance propagation in optical fibers.
arXiv Detail & Related papers (2020-01-07T15:49:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.