論文の概要: Infinite-Horizon Differentiable Model Predictive Control
- arxiv url: http://arxiv.org/abs/2001.02244v1
- Date: Tue, 7 Jan 2020 19:00:39 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 21:28:05.904592
- Title: Infinite-Horizon Differentiable Model Predictive Control
- Title(参考訳): 無限水平微分モデル予測制御
- Authors: Sebastian East, Marco Gallieri, Jonathan Masci, Jan Koutnik, Mark
Cannon
- Abstract要約: 本稿では,安全な模倣学習のための微分線形2次モデル予測制御(MPC)フレームワークを提案する。
このフレームワークの学習能力は、数値的な研究のセットで実証されている。
- 参考スコア(独自算出の注目度): 11.23458396295289
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper proposes a differentiable linear quadratic Model Predictive
Control (MPC) framework for safe imitation learning. The infinite-horizon cost
is enforced using a terminal cost function obtained from the discrete-time
algebraic Riccati equation (DARE), so that the learned controller can be proven
to be stabilizing in closed-loop. A central contribution is the derivation of
the analytical derivative of the solution of the DARE, thereby allowing the use
of differentiation-based learning methods. A further contribution is the
structure of the MPC optimization problem: an augmented Lagrangian method
ensures that the MPC optimization is feasible throughout training whilst
enforcing hard constraints on state and input, and a pre-stabilizing controller
ensures that the MPC solution and derivatives are accurate at each iteration.
The learning capabilities of the framework are demonstrated in a set of
numerical studies.
- Abstract(参考訳): 本稿では,安全な模倣学習のための微分線形2次モデル予測制御(MPC)フレームワークを提案する。
無限水平コストは離散時間代数リカティ方程式(DARE)から得られる終端コスト関数を用いて実施され、学習した制御器が閉ループで安定化することを証明できる。
中心的な貢献はDAREの解の分析微分の導出であり、それによって微分に基づく学習法が利用可能となる。
拡張ラグランジアン法は、状態と入力に厳しい制約を課しながら、MPC最適化が訓練を通して実現可能であることを保証し、事前安定化コントローラは、MPCソリューションとデリバティブが各イテレーションで正確であることを保証する。
このフレームワークの学習能力は、一連の数値研究で実証されている。
関連論文リスト
- Bisimulation metric for Model Predictive Control [44.301098448479195]
Bisimulation Metric for Model Predictive Control (BS-MPC) は、目的関数にbisimulation metric lossを組み込んでエンコーダを直接最適化する新しい手法である。
BS-MPCは、トレーニング時間を削減することにより、トレーニング安定性、入力ノイズに対する堅牢性、および計算効率を向上させる。
我々は,DeepMind Control Suiteから連続制御および画像ベースタスクのBS-MPCを評価する。
論文 参考訳(メタデータ) (2024-10-06T17:12:10Z) - Integrating Reinforcement Learning and Model Predictive Control with Applications to Microgrids [14.389086937116582]
本研究では,強化学習とモデル予測制御(MPC)を統合し,混合力学系における最適制御問題の解法を提案する。
提案手法は, MPC手法のオンライン計算時間を著しく短縮し, 最適性ギャップが小さく, 実現可能性が高いポリシーを生成する。
論文 参考訳(メタデータ) (2024-09-17T15:17:16Z) - Actively Learning Reinforcement Learning: A Stochastic Optimal Control Approach [3.453622106101339]
本研究では,2つの相互に結びついた目的を達成するための枠組みを提案する。 (i) 積極的な探索と意図的な情報収集を伴う強化学習と, (ii) 最適制御法の計算的難易度を克服する枠組みである。
我々は、強化学習を用いて最適制御則を計算することにより、両方の目的にアプローチする。
一定の探索と搾取バランスとは異なり、学習プロセスが終了しても、警告と探索はリアルタイムでコントローラによって自動的に行われる。
論文 参考訳(メタデータ) (2023-09-18T18:05:35Z) - Deep Learning Approximation of Diffeomorphisms via Linear-Control
Systems [91.3755431537592]
我々は、制御に線形に依存する$dot x = sum_i=1lF_i(x)u_i$という形の制御系を考える。
対応するフローを用いて、コンパクトな点のアンサンブル上の微分同相写像の作用を近似する。
論文 参考訳(メタデータ) (2021-10-24T08:57:46Z) - Probabilistic robust linear quadratic regulators with Gaussian processes [73.0364959221845]
ガウス過程(GP)のような確率モデルは、制御設計に続く使用のためのデータから未知の動的システムを学ぶための強力なツールです。
本稿では、確率的安定性マージンに関して堅牢なコントローラを生成する線形化GPダイナミクスのための新しいコントローラ合成について述べる。
論文 参考訳(メタデータ) (2021-05-17T08:36:18Z) - Improper Learning with Gradient-based Policy Optimization [62.50997487685586]
未知のマルコフ決定過程に対して学習者がmベースコントローラを与えられる不適切な強化学習設定を考える。
制御器の不適切な混合のクラス上で動作する勾配に基づくアプローチを提案する。
論文 参考訳(メタデータ) (2021-02-16T14:53:55Z) - Stein Variational Model Predictive Control [130.60527864489168]
不確実性の下での意思決定は、現実の自律システムにとって極めて重要である。
モデル予測制御 (MPC) 法は, 複雑な分布を扱う場合, 適用範囲が限られている。
この枠組みが、挑戦的で非最適な制御問題における計画の成功に繋がることを示す。
論文 参考訳(メタデータ) (2020-11-15T22:36:59Z) - Gaussian Process-based Min-norm Stabilizing Controller for
Control-Affine Systems with Uncertain Input Effects and Dynamics [90.81186513537777]
本稿では,この問題の制御・アフィン特性を捉えた新しい化合物カーネルを提案する。
この結果の最適化問題は凸であることを示し、ガウス過程に基づく制御リャプノフ関数第二次コーンプログラム(GP-CLF-SOCP)と呼ぶ。
論文 参考訳(メタデータ) (2020-11-14T01:27:32Z) - Upper Confidence Primal-Dual Reinforcement Learning for CMDP with
Adversarial Loss [145.54544979467872]
マルコフ決定過程(CMDP)に対するオンライン学習の検討
本稿では,遷移モデルから標本化した軌跡のみを必要とする,新しいEmphupper confidence primal-dualアルゴリズムを提案する。
我々の分析では、ラグランジュ乗算過程の新たな高確率ドリフト解析を、高信頼強化学習の記念後悔解析に組み入れている。
論文 参考訳(メタデータ) (2020-03-02T05:02:23Z) - Neural Lyapunov Model Predictive Control: Learning Safe Global
Controllers from Sub-optimal Examples [4.777323087050061]
多くの実世界の産業アプリケーションでは、例えば人間の操作者による実行など、既存の制御戦略を持つことが典型的である。
この研究の目的は、安全と安定性を維持する新しいコントローラを学習することで、この未知の、安全だが、最適でないポリシーを改善することである。
提案アルゴリズムは、端末コストを学習し、安定性基準に従ってMPCパラメータを更新する。
論文 参考訳(メタデータ) (2020-02-21T16:57:38Z) - Stochastic Finite State Control of POMDPs with LTL Specifications [14.163899014007647]
部分的に観測可能なマルコフ決定プロセス(POMDP)は、不確実性の下での自律的な意思決定のためのモデリングフレームワークを提供する。
本稿では,POMDPに対する準最適有限状態制御器(sFSC)の合成に関する定量的問題について考察する。
本稿では,sFSC サイズが制御される有界ポリシアルゴリズムと,連続的な繰り返しにより制御器の性能が向上する任意の時間アルゴリズムを提案する。
論文 参考訳(メタデータ) (2020-01-21T18:10:47Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。