Thermodynamically-Efficient Local Computation and the Inefficiency of
Quantum Memory Compression
- URL: http://arxiv.org/abs/2001.02258v3
- Date: Sat, 1 Feb 2020 23:14:22 GMT
- Title: Thermodynamically-Efficient Local Computation and the Inefficiency of
Quantum Memory Compression
- Authors: Samuel P. Loomis and James P. Crutchfield
- Abstract summary: Modularity dissipation identifies how locally-implemented computation entails costs beyond those required by Landauer's bound on thermodynamic computing.
We establish a general theorem for efficient local computation, giving the necessary and sufficient conditions for a local operation to have zero cost.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modularity dissipation identifies how locally-implemented computation entails
costs beyond those required by Landauer's bound on thermodynamic computing. We
establish a general theorem for efficient local computation, giving the
necessary and sufficient conditions for a local operation to have zero
modularity cost. Applied to thermodynamically-generating stochastic processes
it confirms a conjecture that classical generators are efficient if and only if
they satisfy retrodiction, which places minimal memory requirements on the
generator. This extends immediately to quantum computation: Any quantum
simulator that employs quantum memory compression cannot be thermodynamically
efficient.
Related papers
- Orbital-free density functional theory with first-quantized quantum subroutines [0.0]
We propose a quantum-classical hybrid scheme for performing orbital-free density functional theory (OFDFT) using probabilistic imaginary-time evolution (PITE)
PITE is applied to the part of OFDFT that searches the ground state of the Hamiltonian in each self-consistent field (SCF) iteration.
It is shown that obtaining the ground state energy of Hamiltonian requires a circuit depth of $O(log N_mathrmg)$.
arXiv Detail & Related papers (2024-07-23T05:34:11Z) - Estimation of electrostatic interaction energies on a trapped-ion
quantum computer [29.884106383002205]
We present the first hardware implementation of electrostatic interaction energies using a trapped-ion quantum computer.
The quantum computer is used to generate an approximate ground state within the active space.
arXiv Detail & Related papers (2023-12-22T14:46:41Z) - Calculating the many-body density of states on a digital quantum
computer [58.720142291102135]
We implement a quantum algorithm to perform an estimation of the density of states on a digital quantum computer.
We use our algorithm to estimate the density of states of a non-integrable Hamiltonian on the Quantinuum H1-1 trapped ion chip for a controlled register of 18bits.
arXiv Detail & Related papers (2023-03-23T17:46:28Z) - Exploring the role of parameters in variational quantum algorithms [59.20947681019466]
We introduce a quantum-control-inspired method for the characterization of variational quantum circuits using the rank of the dynamical Lie algebra.
A promising connection is found between the Lie rank, the accuracy of calculated energies, and the requisite depth to attain target states via a given circuit architecture.
arXiv Detail & Related papers (2022-09-28T20:24:53Z) - A Universal Constraint on Computational Rates in Physical Systems [0.0]
General proof is given for open quantum systems showing that a computer thermally coupled to its environment will necessarily dissipate entropy (and hence heat)
Specifically, a lower bound is obtained that corresponds to the adiabatic regime, in which the amount of entropy dissipated per computational operation is proportional to the rate of computation.
arXiv Detail & Related papers (2022-08-23T21:18:53Z) - The vacuum provides quantum advantage to otherwise simulatable
architectures [49.1574468325115]
We consider a computational model composed of ideal Gottesman-Kitaev-Preskill stabilizer states.
We provide an algorithm to calculate the probability density function of the measurement outcomes.
arXiv Detail & Related papers (2022-05-19T18:03:17Z) - Third law of thermodynamics and the scaling of quantum computers [5.161531917413708]
A fundamental assumption of quantum computing is to start each computation from a register of qubits in a pure state, i.e., at zero temperature.
We argue how the existence of a small, but finite, effective temperature, which makes the initial state a mixed state, poses a real challenge to the fidelity constraints required for the scaling of quantum computers.
arXiv Detail & Related papers (2022-03-17T18:04:35Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - Considerations for evaluating thermodynamic properties with hybrid
quantum-classical computing work-flows [0.0]
Quantum chemistry applications on quantum computers currently rely heavily on the variational quantum eigensolver algorithm.
We present a summary of the hybrid quantum-classical work-flow to compute thermodynamic properties.
We show that through careful selection of work-flow options, nearly order-of-magnitude increases in accuracy are possible at equivalent computing time.
arXiv Detail & Related papers (2020-03-04T19:32:53Z) - Simulation of Thermal Relaxation in Spin Chemistry Systems on a Quantum
Computer Using Inherent Qubit Decoherence [53.20999552522241]
We seek to take advantage of qubit decoherence as a resource in simulating the behavior of real world quantum systems.
We present three methods for implementing the thermal relaxation.
We find excellent agreement between our results, experimental data, and the theoretical prediction.
arXiv Detail & Related papers (2020-01-03T11:48:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.