Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views
- URL: http://arxiv.org/abs/2308.10077v1
- Date: Sat, 19 Aug 2023 17:42:02 GMT
- Title: Contrastive Learning for Non-Local Graphs with Multi-Resolution
Structural Views
- Authors: Asif Khan, Amos Storkey
- Abstract summary: We propose a novel multiview contrastive learning approach that integrates diffusion filters on graphs.
By incorporating multiple graph views as augmentations, our method captures the structural equivalence in heterophilic graphs.
- Score: 1.4445779250002606
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Learning node-level representations of heterophilic graphs is crucial for
various applications, including fraudster detection and protein function
prediction. In such graphs, nodes share structural similarity identified by the
equivalence of their connectivity which is implicitly encoded in the form of
higher-order hierarchical information in the graphs. The contrastive methods
are popular choices for learning the representation of nodes in a graph.
However, existing contrastive methods struggle to capture higher-order graph
structures. To address this limitation, we propose a novel multiview
contrastive learning approach that integrates diffusion filters on graphs. By
incorporating multiple graph views as augmentations, our method captures the
structural equivalence in heterophilic graphs, enabling the discovery of hidden
relationships and similarities not apparent in traditional node
representations. Our approach outperforms baselines on synthetic and real
structural datasets, surpassing the best baseline by $16.06\%$ on Cornell,
$3.27\%$ on Texas, and $8.04\%$ on Wisconsin. Additionally, it consistently
achieves superior performance on proximal tasks, demonstrating its
effectiveness in uncovering structural information and improving downstream
applications.
Related papers
- Robust Graph Structure Learning under Heterophily [12.557639223778722]
We propose a novel robust graph structure learning method to achieve a high-quality graph from heterophilic data for downstream tasks.
We first apply a high-pass filter to make each node more distinctive from its neighbors by encoding structure information into the node features.
Then, we learn a robust graph with an adaptive norm characterizing different levels of noise.
arXiv Detail & Related papers (2024-03-06T12:29:13Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - CGMN: A Contrastive Graph Matching Network for Self-Supervised Graph
Similarity Learning [65.1042892570989]
We propose a contrastive graph matching network (CGMN) for self-supervised graph similarity learning.
We employ two strategies, namely cross-view interaction and cross-graph interaction, for effective node representation learning.
We transform node representations into graph-level representations via pooling operations for graph similarity computation.
arXiv Detail & Related papers (2022-05-30T13:20:26Z) - Supervised Contrastive Learning with Structure Inference for Graph
Classification [5.276232626689567]
We propose a graph neural network based on supervised contrastive learning and structure inference for graph classification.
With the integration of label information, the one-vs-many contrastive learning can be extended to a many-vs-many setting.
Experiment results show the effectiveness of the proposed method compared with recent state-of-the-art methods.
arXiv Detail & Related papers (2022-03-15T07:18:46Z) - Edge but not Least: Cross-View Graph Pooling [76.71497833616024]
This paper presents a cross-view graph pooling (Co-Pooling) method to better exploit crucial graph structure information.
Through cross-view interaction, edge-view pooling and node-view pooling seamlessly reinforce each other to learn more informative graph-level representations.
arXiv Detail & Related papers (2021-09-24T08:01:23Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Multi-Level Graph Contrastive Learning [38.022118893733804]
We propose a Multi-Level Graph Contrastive Learning (MLGCL) framework for learning robust representation of graph data by contrasting space views of graphs.
The original graph is first-order approximation structure and contains uncertainty or error, while the $k$NN graph generated by encoding features preserves high-order proximity.
Extensive experiments indicate MLGCL achieves promising results compared with the existing state-of-the-art graph representation learning methods on seven datasets.
arXiv Detail & Related papers (2021-07-06T14:24:43Z) - Self-Supervised Graph Learning with Proximity-based Views and Channel
Contrast [4.761137180081091]
Graph neural networks (GNNs) use neighborhood aggregation as a core component that results in feature smoothing among nodes in proximity.
To tackle this problem, we strengthen the graph with two additional graph views, in which nodes are directly linked to those with the most similar features or local structures.
We propose a method that aims to maximize the agreement between representations across generated views and the original graph.
arXiv Detail & Related papers (2021-06-07T15:38:36Z) - A Robust and Generalized Framework for Adversarial Graph Embedding [73.37228022428663]
We propose a robust framework for adversarial graph embedding, named AGE.
AGE generates the fake neighbor nodes as the enhanced negative samples from the implicit distribution.
Based on this framework, we propose three models to handle three types of graph data.
arXiv Detail & Related papers (2021-05-22T07:05:48Z) - Graph Pooling with Node Proximity for Hierarchical Representation
Learning [80.62181998314547]
We propose a novel graph pooling strategy that leverages node proximity to improve the hierarchical representation learning of graph data with their multi-hop topology.
Results show that the proposed graph pooling strategy is able to achieve state-of-the-art performance on a collection of public graph classification benchmark datasets.
arXiv Detail & Related papers (2020-06-19T13:09:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.