High-Level Plan for Behavioral Robot Navigation with Natural Language
Directions and R-NET
- URL: http://arxiv.org/abs/2001.02330v1
- Date: Wed, 8 Jan 2020 01:14:11 GMT
- Title: High-Level Plan for Behavioral Robot Navigation with Natural Language
Directions and R-NET
- Authors: Amar Shrestha, Krittaphat Pugdeethosapol, Haowen Fang, Qinru Qiu
- Abstract summary: We develop an understanding of the behavioral navigational graph to enable the pointer network to produce a sequence of behaviors representing the path.
Tests on the navigation graph dataset show that our model outperforms the state-of-the-art approach for both known and unknown environments.
- Score: 6.47137925955334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: When the navigational environment is known, it can be represented as a graph
where landmarks are nodes, the robot behaviors that move from node to node are
edges, and the route is a set of behavioral instructions. The route path from
source to destination can be viewed as a class of combinatorial optimization
problems where the path is a sequential subset from a set of discrete items.
The pointer network is an attention-based recurrent network that is suitable
for such a task. In this paper, we utilize a modified R-NET with gated
attention and self-matching attention translating natural language instructions
to a high-level plan for behavioral robot navigation by developing an
understanding of the behavioral navigational graph to enable the pointer
network to produce a sequence of behaviors representing the path. Tests on the
navigation graph dataset show that our model outperforms the state-of-the-art
approach for both known and unknown environments.
Related papers
- PRET: Planning with Directed Fidelity Trajectory for Vision and Language Navigation [30.710806048991923]
Vision and language navigation is a task that requires an agent to navigate according to a natural language instruction.
Recent methods predict sub-goals on constructed topology map at each step to enable long-term action planning.
We propose an alternative method that facilitates navigation planning by considering the alignment between instructions and directed fidelity trajectories.
arXiv Detail & Related papers (2024-07-16T08:22:18Z) - Interactive Semantic Map Representation for Skill-based Visual Object
Navigation [43.71312386938849]
This paper introduces a new representation of a scene semantic map formed during the embodied agent interaction with the indoor environment.
We have implemented this representation into a full-fledged navigation approach called SkillTron.
The proposed approach makes it possible to form both intermediate goals for robot exploration and the final goal for object navigation.
arXiv Detail & Related papers (2023-11-07T16:30:12Z) - Learning to Predict Navigational Patterns from Partial Observations [63.04492958425066]
This paper presents the first self-supervised learning (SSL) method for learning to infer navigational patterns in real-world environments from partial observations only.
We demonstrate how to infer global navigational patterns by fitting a maximum likelihood graph to the DSLP field.
Experiments show that our SSL model outperforms two SOTA supervised lane graph prediction models on the nuScenes dataset.
arXiv Detail & Related papers (2023-04-26T02:08:46Z) - ETPNav: Evolving Topological Planning for Vision-Language Navigation in
Continuous Environments [56.194988818341976]
Vision-language navigation is a task that requires an agent to follow instructions to navigate in environments.
We propose ETPNav, which focuses on two critical skills: 1) the capability to abstract environments and generate long-range navigation plans, and 2) the ability of obstacle-avoiding control in continuous environments.
ETPNav yields more than 10% and 20% improvements over prior state-of-the-art on R2R-CE and RxR-CE datasets.
arXiv Detail & Related papers (2023-04-06T13:07:17Z) - ReVoLT: Relational Reasoning and Voronoi Local Graph Planning for
Target-driven Navigation [1.0896567381206714]
Embodied AI is an inevitable trend that emphasizes the interaction between intelligent entities and the real world.
Recent works focus on exploiting layout relationships by graph neural networks (GNNs)
We decouple this task and propose ReVoLT, a hierarchical framework.
arXiv Detail & Related papers (2023-01-06T05:19:56Z) - RSG-Net: Towards Rich Sematic Relationship Prediction for Intelligent
Vehicle in Complex Environments [72.04891523115535]
We propose RSG-Net (Road Scene Graph Net): a graph convolutional network designed to predict potential semantic relationships from object proposals.
The experimental results indicate that this network, trained on Road Scene Graph dataset, could efficiently predict potential semantic relationships among objects around the ego-vehicle.
arXiv Detail & Related papers (2022-07-16T12:40:17Z) - Find a Way Forward: a Language-Guided Semantic Map Navigator [53.69229615952205]
This paper attacks the problem of language-guided navigation in a new perspective.
We use novel semantic navigation maps, which enables robots to carry out natural language instructions and move to a target position based on the map observations.
The proposed approach has noticeable performance gains, especially in long-distance navigation cases.
arXiv Detail & Related papers (2022-03-07T07:40:33Z) - SOON: Scenario Oriented Object Navigation with Graph-based Exploration [102.74649829684617]
The ability to navigate like a human towards a language-guided target from anywhere in a 3D embodied environment is one of the 'holy grail' goals of intelligent robots.
Most visual navigation benchmarks focus on navigating toward a target from a fixed starting point, guided by an elaborate set of instructions that depicts step-by-step.
This approach deviates from real-world problems in which human-only describes what the object and its surrounding look like and asks the robot to start navigation from anywhere.
arXiv Detail & Related papers (2021-03-31T15:01:04Z) - GANav: Group-wise Attention Network for Classifying Navigable Regions in
Unstructured Outdoor Environments [54.21959527308051]
We present a new learning-based method for identifying safe and navigable regions in off-road terrains and unstructured environments from RGB images.
Our approach consists of classifying groups of terrain classes based on their navigability levels using coarse-grained semantic segmentation.
We show through extensive evaluations on the RUGD and RELLIS-3D datasets that our learning algorithm improves the accuracy of visual perception in off-road terrains for navigation.
arXiv Detail & Related papers (2021-03-07T02:16:24Z) - Autonomous Navigation through intersections with Graph
ConvolutionalNetworks and Conditional Imitation Learning for Self-driving
Cars [10.080958939027363]
In autonomous driving, navigation through unsignaled intersections is a challenging task.
We propose a novel branched network G-CIL for the navigation policy learning.
Our end-to-end trainable neural network outperforms the baselines with higher success rate and shorter navigation time.
arXiv Detail & Related papers (2021-02-01T07:33:12Z) - Topological Planning with Transformers for Vision-and-Language
Navigation [31.64229792521241]
We propose a modular approach to vision-and-language navigation (VLN) using topological maps.
Given a natural language instruction and topological map, our approach leverages attention mechanisms to predict a navigation plan in the map.
Experiments show that our method outperforms previous end-to-end approaches, generates interpretable navigation plans, and exhibits intelligent behaviors such as backtracking.
arXiv Detail & Related papers (2020-12-09T20:02:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.