Autonomous Navigation through intersections with Graph
ConvolutionalNetworks and Conditional Imitation Learning for Self-driving
Cars
- URL: http://arxiv.org/abs/2102.00675v1
- Date: Mon, 1 Feb 2021 07:33:12 GMT
- Title: Autonomous Navigation through intersections with Graph
ConvolutionalNetworks and Conditional Imitation Learning for Self-driving
Cars
- Authors: Xiaodong Mei, Yuxiang Sun, Yuying Chen, Congcong Liu, Ming Liu
- Abstract summary: In autonomous driving, navigation through unsignaled intersections is a challenging task.
We propose a novel branched network G-CIL for the navigation policy learning.
Our end-to-end trainable neural network outperforms the baselines with higher success rate and shorter navigation time.
- Score: 10.080958939027363
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In autonomous driving, navigation through unsignaled intersections with many
traffic participants moving around is a challenging task. To provide a solution
to this problem, we propose a novel branched network G-CIL for the navigation
policy learning. Specifically, we firstly represent such dynamic environments
as graph-structured data and propose an effective strategy for edge definition
to aggregate surrounding information for the ego-vehicle. Then graph
convolutional neural networks are used as the perception module to capture
global and geometric features from the environment. To generate safe and
efficient navigation policy, we further incorporate it with conditional
imitation learning algorithm, to learn driving behaviors directly from expert
demonstrations. Our proposed network is capable of handling a varying number of
surrounding vehicles and generating optimal control actions (e.g., steering
angle and throttle) according to the given high-level commands (e.g., turn left
towards the global goal). Evaluations on unsignaled intersections with various
traffic densities demonstrate that our end-to-end trainable neural network
outperforms the baselines with higher success rate and shorter navigation time.
Related papers
- Towards Multi-agent Reinforcement Learning based Traffic Signal Control through Spatio-temporal Hypergraphs [19.107744041461316]
Traffic signal control systems (TSCSs) are integral to intelligent traffic management, fostering efficient vehicle flow.
Traditional approaches often simplify road networks into standard graphs.
We propose a novel TSCS framework to realize intelligent traffic control.
arXiv Detail & Related papers (2024-04-17T02:46:18Z) - Eco-Driving Control of Connected and Automated Vehicles using Neural
Network based Rollout [0.0]
Connected and autonomous vehicles have the potential to minimize energy consumption.
Existing deterministic and methods created to solve the eco-driving problem generally suffer from high computational and memory requirements.
This work proposes a hierarchical multi-horizon optimization framework implemented via a neural network.
arXiv Detail & Related papers (2023-10-16T23:13:51Z) - Graph-based Topology Reasoning for Driving Scenes [102.35885039110057]
We present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks.
We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2.
arXiv Detail & Related papers (2023-04-11T15:23:29Z) - GINK: Graph-based Interaction-aware Kinodynamic Planning via
Reinforcement Learning for Autonomous Driving [10.782043595405831]
There are many challenges in applying deep reinforcement learning (D) to autonomous driving in a structured environment such as an urban area.
In this paper, we suggest a new framework that effectively combines graph-based intention representation and reinforcement learning for dynamic planning.
The experiments show the state-of-the-art performance of our approach compared to the existing baselines.
arXiv Detail & Related papers (2022-06-03T10:37:25Z) - Efficient Federated Learning with Spike Neural Networks for Traffic Sign
Recognition [70.306089187104]
We introduce powerful Spike Neural Networks (SNNs) into traffic sign recognition for energy-efficient and fast model training.
Numerical results indicate that the proposed federated SNN outperforms traditional federated convolutional neural networks in terms of accuracy, noise immunity, and energy efficiency as well.
arXiv Detail & Related papers (2022-05-28T03:11:48Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
Accurate inference of fine-grained traffic flow from coarse-grained one is an emerging yet crucial problem.
We propose a novel Road-Aware Traffic Flow Magnifier (RATFM) that exploits the prior knowledge of road networks.
Our method can generate high-quality fine-grained traffic flow maps.
arXiv Detail & Related papers (2021-09-29T07:51:49Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Multi-Agent Routing Value Iteration Network [88.38796921838203]
We propose a graph neural network based model that is able to perform multi-agent routing based on learned value in a sparsely connected graph.
We show that our model trained with only two agents on graphs with a maximum of 25 nodes can easily generalize to situations with more agents and/or nodes.
arXiv Detail & Related papers (2020-07-09T22:16:45Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - IG-RL: Inductive Graph Reinforcement Learning for Massive-Scale Traffic
Signal Control [4.273991039651846]
Scaling adaptive traffic-signal control involves dealing with state and action spaces.
We introduce Inductive Graph Reinforcement Learning (IG-RL) based on graph-convolutional networks.
Our model can generalize to new road networks, traffic distributions, and traffic regimes.
arXiv Detail & Related papers (2020-03-06T17:17:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.