論文の概要: On Interpretability of Artificial Neural Networks: A Survey
- arxiv url: http://arxiv.org/abs/2001.02522v4
- Date: Mon, 27 Sep 2021 19:44:24 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 09:33:40.634977
- Title: On Interpretability of Artificial Neural Networks: A Survey
- Title(参考訳): ニューラルネットワークの解釈可能性に関する調査
- Authors: Fenglei Fan, Jinjun Xiong, Mengzhou Li, and Ge Wang
- Abstract要約: 我々は、ニューラルネットワークのメカニズムを理解するための最近の研究を体系的にレビューし、特に医学における解釈可能性の応用について述べる。
本稿では,ファジィ論理や脳科学などの解釈可能性研究の今後の方向性について論じる。
- 参考スコア(独自算出の注目度): 21.905647127437685
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning as represented by the artificial deep neural networks (DNNs)
has achieved great success in many important areas that deal with text, images,
videos, graphs, and so on. However, the black-box nature of DNNs has become one
of the primary obstacles for their wide acceptance in mission-critical
applications such as medical diagnosis and therapy. Due to the huge potential
of deep learning, interpreting neural networks has recently attracted much
research attention. In this paper, based on our comprehensive taxonomy, we
systematically review recent studies in understanding the mechanism of neural
networks, describe applications of interpretability especially in medicine, and
discuss future directions of interpretability research, such as in relation to
fuzzy logic and brain science.
- Abstract(参考訳): 人工深層ニューラルネットワーク(DNN)に代表されるディープラーニングは、テキスト、画像、ビデオ、グラフなどを扱う多くの重要な領域で大きな成功を収めている。
しかし、DNNのブラックボックスの性質は、医療診断や治療などのミッションクリティカルな応用において広く受け入れられる主要な障害の一つとなっている。
ディープラーニングの巨大な可能性のために、ニューラルネットワークの解釈は近年多くの研究の注目を集めている。
本稿では,ニューラルネットワークのメカニズムを理解するための最近の研究,特に医学における解釈可能性の応用を体系的に検討し,ファジィ論理や脳科学などの解釈可能性研究の今後の方向性について議論する。
関連論文リスト
- Explaining Deep Neural Networks by Leveraging Intrinsic Methods [0.9790236766474201]
この論文はeXplainable AIの分野に貢献し、ディープニューラルネットワークの解釈可能性の向上に重点を置いている。
中心となる貢献は、これらのネットワークをより解釈しやすくすることを目的とした新しい技術の導入である。
第2に、この研究は、訓練された深層ニューラルネットワーク内のニューロンに関する新しい研究を掘り下げ、その活性化値に関連する見過ごされた現象に光を当てた。
論文 参考訳(メタデータ) (2024-07-17T01:20:17Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - Automated Natural Language Explanation of Deep Visual Neurons with Large
Models [43.178568768100305]
本稿では,大きな基礎モデルを持つニューロンの意味的説明を生成するための,新しいポストホックフレームワークを提案する。
我々のフレームワークは、様々なモデルアーキテクチャやデータセット、自動化されたスケーラブルなニューロン解釈と互換性があるように設計されています。
論文 参考訳(メタデータ) (2023-10-16T17:04:51Z) - Addressing caveats of neural persistence with deep graph persistence [54.424983583720675]
神経の持続性に影響を与える主な要因は,ネットワークの重みのばらつきと大きな重みの空間集中である。
単一層ではなく,ニューラルネットワーク全体へのニューラルネットワークの持続性に基づくフィルタリングの拡張を提案する。
これにより、ネットワーク内の永続的なパスを暗黙的に取り込み、分散に関連する問題を緩和するディープグラフの永続性測定が得られます。
論文 参考訳(メタデータ) (2023-07-20T13:34:11Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
論文 参考訳(メタデータ) (2023-03-30T02:40:28Z) - Spiking neural network for nonlinear regression [68.8204255655161]
スパイクニューラルネットワークは、メモリとエネルギー消費を大幅に削減する可能性を持っている。
彼らは、次世代のニューロモルフィックハードウェアによって活用できる時間的および神経的疎結合を導入する。
スパイキングニューラルネットワークを用いた回帰フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-06T13:04:45Z) - Neuro-Symbolic Learning: Principles and Applications in Ophthalmology [20.693460748187906]
ニューロシンボリックラーニング(NeSyL)の概念は、記号表現の側面を取り入れ、ニューラルネット(NeSyL)に共通の感覚をもたらす。
NeSyLは、ビデオや画像キャプション、質問回答と推論、健康情報学、ゲノム学など、解釈可能性、推論可能性、説明可能性が重要である領域において、有望な結果を示している。
このレビューでは、最先端のNeSyLアプローチ、その原則、機械学習およびディープラーニングアルゴリズムの進歩、オプタルモロジーのような応用、そして最も重要なのは、この新興分野の今後の展望について包括的に調査する。
論文 参考訳(メタデータ) (2022-07-31T06:48:19Z) - Interpretability of Neural Network With Physiological Mechanisms [5.1971653175509145]
ディープラーニングは、レグレッションと分類タスクの様々な領域で異常な精度を達成した強力な最先端技術として、引き続き機能している。
ニューラルネットワークモデルを最初に提案する目的は、数学的表現アプローチを使用して複雑な人間の脳を理解することを改善することである。
近年のディープラーニング技術は、ブラックボックス近似器として扱われることによって、機能的プロセスの解釈を失う傾向にある。
論文 参考訳(メタデータ) (2022-03-24T21:40:04Z) - Deep Reinforcement Learning Guided Graph Neural Networks for Brain
Network Analysis [61.53545734991802]
本稿では,各脳ネットワークに最適なGNNアーキテクチャを探索する新しい脳ネットワーク表現フレームワークBN-GNNを提案する。
提案するBN-GNNは,脳ネットワーク解析タスクにおける従来のGNNの性能を向上させる。
論文 参考訳(メタデータ) (2022-03-18T07:05:27Z) - Mathematical Models of Overparameterized Neural Networks [25.329225766892126]
我々は,2層ニューラルネットワークの解析に焦点をあて,重要な数学的モデルを説明する。
次に、ディープニューラルネットワークと現在の研究方向を理解するための課題について論じる。
論文 参考訳(メタデータ) (2020-12-27T17:48:31Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。