論文の概要: Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits
- arxiv url: http://arxiv.org/abs/2303.18187v3
- Date: Fri, 25 Oct 2024 04:41:17 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-28 13:35:23.747529
- Title: Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits
- Title(参考訳): 対照的な信号依存塑性:スパイキングニューラルネットワークにおける自己教師付き学習
- Authors: Alexander Ororbia,
- Abstract要約: この研究は、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計することの課題に対処する。
我々の実験シミュレーションは、繰り返しスパイクネットワークを訓練する際、他の生物学的に証明可能なアプローチに対して一貫した優位性を示す。
- 参考スコア(独自算出の注目度): 61.94533459151743
- License:
- Abstract: Brain-inspired machine intelligence research seeks to develop computational models that emulate the information processing and adaptability that distinguishes biological systems of neurons. This has led to the development of spiking neural networks, a class of models that promisingly addresses the biological implausibility and {the lack of energy efficiency} inherent to modern-day deep neural networks. In this work, we address the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks and propose contrastive-signal-dependent plasticity, a process which generalizes ideas behind self-supervised learning to facilitate local adaptation in architectures of event-based neuronal layers that operate in parallel. Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks, crucially side-stepping the need for extra structure such as feedback synapses.
- Abstract(参考訳): 脳にインスパイアされたマシンインテリジェンスの研究は、ニューロンの生物学的システムを識別する情報処理と適応性をエミュレートする計算モデルの開発を目指している。
このことが、現代のディープニューラルネットワークに固有の生物学的不確実性やエネルギー効率の欠如に積極的に対処する一連のモデルであるスパイクニューラルネットワークの開発につながった。
本研究では、スパイキングネットワークのシナプスを調整するための神経生物学的に動機づけられたスキームを設計する上での課題に対処し、並列に動作するイベントベースの神経階層のアーキテクチャにおいて、自己教師あり学習の背景にあるアイデアを一般化するプロセスであるコントラッシブ・シグナル依存のプラスティック性を提案する。
実験により, 繰り返しスパイクネットワークを訓練する場合, フィードバックシナプスなどの余分な構造を必要とする場合, 生物学的に証明可能なアプローチに対して一貫した優位性を示した。
関連論文リスト
- Retinal Vessel Segmentation via Neuron Programming [17.609169389489633]
本稿では,神経レベルでのネットワークの表現能力を高めるため,ニューラルネット設計における新しいアプローチであるニューラルネットプログラミングについて紹介する。
総合的な実験により、ニューロンプログラミングは網膜の血液分画において競合的な性能を発揮することが検証された。
論文 参考訳(メタデータ) (2024-11-17T16:03:30Z) - Contrastive Learning in Memristor-based Neuromorphic Systems [55.11642177631929]
スパイクニューラルネットワークは、現代のバックプロパゲーションによって訓練されたディープネットワークに直面する重要な制約の多くを横取りする、ニューロンベースのモデルの重要なファミリーとなっている。
本研究では,前向き・後向き学習のニューロモルフィック形式であるコントラッシブ・シグナル依存型塑性(CSDP)の概念実証を設計し,検討する。
論文 参考訳(メタデータ) (2024-09-17T04:48:45Z) - Enhancing learning in spiking neural networks through neuronal heterogeneity and neuromodulatory signaling [52.06722364186432]
人工ニューラルネットワーク(ANN)の強化のための生物学的インフォームドフレームワークを提案する。
提案したデュアルフレームアプローチは、多様なスパイキング動作をエミュレートするためのスパイキングニューラルネットワーク(SNN)の可能性を強調している。
提案手法は脳にインスパイアされたコンパートメントモデルとタスク駆動型SNN, バイオインスピレーション, 複雑性を統合している。
論文 参考訳(メタデータ) (2024-07-05T14:11:28Z) - Evolving Self-Assembling Neural Networks: From Spontaneous Activity to Experience-Dependent Learning [7.479827648985631]
本稿では, 自己組織型ニューラルネットワークを, 活動と報酬に依存した方法でシナプス的, 構造的可塑性のクラスとして提案する。
その結果、ランダムに接続されたネットワークや空きネットワークから、異なる制御タスクの経験からモデルが学習できることが示されている。
論文 参考訳(メタデータ) (2024-06-14T07:36:21Z) - Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
本稿では,神経生物学にインスパイアされた,あるいは動機付けられた人工ニューラルネットワークにおける信用割当を行うアルゴリズムについて検討する。
我々は、脳にインスパイアされた学習スキームを6つの一般的なファミリーにまとめ、これらを誤りのバックプロパゲーションの文脈で検討する。
本研究の成果は,神経ミメティックシステムとその構成的学習プロセスの今後の発展を促進することを目的としている。
論文 参考訳(メタデータ) (2023-12-01T05:20:57Z) - POPPINS : A Population-Based Digital Spiking Neuromorphic Processor with
Integer Quadratic Integrate-and-Fire Neurons [50.591267188664666]
2つの階層構造を持つ180nmプロセス技術において,集団に基づくディジタルスパイキングニューロモルフィックプロセッサを提案する。
提案手法は,生体模倣型ニューロモルフィックシステム,低消費電力,低遅延推論処理アプリケーションの開発を可能にする。
論文 参考訳(メタデータ) (2022-01-19T09:26:34Z) - Evolving spiking neuron cellular automata and networks to emulate in
vitro neuronal activity [0.0]
我々は生体内における生体ニューロンの行動パターンをエミュレートするスパイキング神経系を生産する。
我々のモデルは、ネットワーク全体の同期レベルを生成できた。
トップパフォーマンスモデルのゲノムは、生成した活動の複雑さを決定する上で、モデル内の接続の興奮性と密度が重要な役割を果たすことを示している。
論文 参考訳(メタデータ) (2021-10-15T17:55:04Z) - Recurrent Neural Network Learning of Performance and Intrinsic
Population Dynamics from Sparse Neural Data [77.92736596690297]
本稿では,RNNの入出力動作だけでなく,内部ネットワークのダイナミクスも学習できる新しいトレーニング戦略を提案する。
提案手法は、RNNを訓練し、生理学的にインスパイアされた神経モデルの内部ダイナミクスと出力信号を同時に再現する。
注目すべきは、トレーニングアルゴリズムがニューロンの小さなサブセットの活性に依存する場合であっても、内部動力学の再現が成功することである。
論文 参考訳(メタデータ) (2020-05-05T14:16:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。