Deep learning reveals hidden interactions in complex systems
- URL: http://arxiv.org/abs/2001.02539v4
- Date: Thu, 12 Nov 2020 08:33:30 GMT
- Title: Deep learning reveals hidden interactions in complex systems
- Authors: Seungwoong Ha, Hawoong Jeong
- Abstract summary: AgentNet is a model-free data-driven framework consisting of deep neural networks to reveal hidden interactions in complex systems.
A demonstration with empirical data from a flock of birds showed that AgentNet could identify hidden interaction ranges exhibited by real birds.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Rich phenomena from complex systems have long intrigued researchers, and yet
modeling system micro-dynamics and inferring the forms of interaction remain
challenging for conventional data-driven approaches, being generally
established by human scientists. In this study, we propose AgentNet, a
model-free data-driven framework consisting of deep neural networks to reveal
and analyze the hidden interactions in complex systems from observed data
alone. AgentNet utilizes a graph attention network with novel variable-wise
attention to model the interaction between individual agents, and employs
various encoders and decoders that can be selectively applied to any desired
system. Our model successfully captured a wide variety of simulated complex
systems, namely cellular automata (discrete), the Vicsek model (continuous),
and active Ornstein--Uhlenbeck particles (non-Markovian) in which, notably,
AgentNet's visualized attention values coincided with the true interaction
strength and exhibited collective behavior that was absent in the training
data. A demonstration with empirical data from a flock of birds showed that
AgentNet could identify hidden interaction ranges exhibited by real birds,
which cannot be detected by conventional velocity correlation analysis. We
expect our framework to open a novel path to investigating complex systems and
to provide insight into general process-driven modeling.
Related papers
- Learning Collective Dynamics of Multi-Agent Systems using Event-based Vision [15.26086907502649]
This paper proposes a novel problem: vision-based perception to learn and predict the collective dynamics of multi-agent systems.
We focus on deep learning models to directly predict collective dynamics from visual data, captured as frames or events.
We empirically demonstrate the effectiveness of event-based representation over traditional frame-based methods in predicting these collective behaviors.
arXiv Detail & Related papers (2024-11-11T14:45:47Z) - LINOCS: Lookahead Inference of Networked Operators for Continuous Stability [4.508868068781057]
We introduce Lookahead-driven Inference of Networked Operators for Continuous Stability (LINOCS)
LINOCS is a robust learning procedure for identifying hidden dynamical interactions in noisy time-series data.
We demonstrate LINOCS' ability to recover the ground truth dynamical operators underlying synthetic time-series data.
arXiv Detail & Related papers (2024-04-28T18:16:58Z) - Inferring Relational Potentials in Interacting Systems [56.498417950856904]
We propose Neural Interaction Inference with Potentials (NIIP) as an alternative approach to discover such interactions.
NIIP assigns low energy to the subset of trajectories which respect the relational constraints observed.
It allows trajectory manipulation, such as interchanging interaction types across separately trained models, as well as trajectory forecasting.
arXiv Detail & Related papers (2023-10-23T00:44:17Z) - Learning Latent Dynamics via Invariant Decomposition and
(Spatio-)Temporal Transformers [0.6767885381740952]
We propose a method for learning dynamical systems from high-dimensional empirical data.
We focus on the setting in which data are available from multiple different instances of a system.
We study behaviour through simple theoretical analyses and extensive experiments on synthetic and real-world datasets.
arXiv Detail & Related papers (2023-06-21T07:52:07Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - Learning Interacting Dynamical Systems with Latent Gaussian Process ODEs [13.436770170612295]
We study for the first time uncertainty-aware modeling of continuous-time dynamics of interacting objects.
Our model infers both independent dynamics and their interactions with reliable uncertainty estimates.
arXiv Detail & Related papers (2022-05-24T08:36:25Z) - Leveraging the structure of dynamical systems for data-driven modeling [111.45324708884813]
We consider the impact of the training set and its structure on the quality of the long-term prediction.
We show how an informed design of the training set, based on invariants of the system and the structure of the underlying attractor, significantly improves the resulting models.
arXiv Detail & Related papers (2021-12-15T20:09:20Z) - Beyond Tracking: Using Deep Learning to Discover Novel Interactions in
Biological Swarms [3.441021278275805]
We propose training deep network models to predict system-level states directly from generic graphical features from the entire view.
Because the resulting predictive models are not based on human-understood predictors, we use explanatory modules.
This represents an example of augmented intelligence in behavioral ecology -- knowledge co-creation in a human-AI team.
arXiv Detail & Related papers (2021-08-20T22:50:41Z) - Multi-Agent Imitation Learning with Copulas [102.27052968901894]
Multi-agent imitation learning aims to train multiple agents to perform tasks from demonstrations by learning a mapping between observations and actions.
In this paper, we propose to use copula, a powerful statistical tool for capturing dependence among random variables, to explicitly model the correlation and coordination in multi-agent systems.
Our proposed model is able to separately learn marginals that capture the local behavioral patterns of each individual agent, as well as a copula function that solely and fully captures the dependence structure among agents.
arXiv Detail & Related papers (2021-07-10T03:49:41Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Towards Interaction Detection Using Topological Analysis on Neural
Networks [55.74562391439507]
In neural networks, any interacting features must follow a strongly weighted connection to common hidden units.
We propose a new measure for quantifying interaction strength, based upon the well-received theory of persistent homology.
A Persistence Interaction detection(PID) algorithm is developed to efficiently detect interactions.
arXiv Detail & Related papers (2020-10-25T02:15:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.