論文の概要: Least squares binary quantization of neural networks
- arxiv url: http://arxiv.org/abs/2001.02786v3
- Date: Sat, 13 Jun 2020 07:23:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 04:12:08.868263
- Title: Least squares binary quantization of neural networks
- Title(参考訳): ニューラルネットワークの最小二乗量子化
- Authors: Hadi Pouransari, Zhucheng Tu, Oncel Tuzel
- Abstract要約: 値が-1と1にマップされる二項量子化に焦点を当てる。
2ビット対1ビット量子化のパリト最適性に触発されて、証明可能な最小二乗誤差を持つ新しい2ビット量子化を導入する。
- 参考スコア(独自算出の注目度): 19.818087225770967
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantizing weights and activations of deep neural networks results in
significant improvement in inference efficiency at the cost of lower accuracy.
A source of the accuracy gap between full precision and quantized models is the
quantization error. In this work, we focus on the binary quantization, in which
values are mapped to -1 and 1. We provide a unified framework to analyze
different scaling strategies. Inspired by the pareto-optimality of 2-bits
versus 1-bit quantization, we introduce a novel 2-bits quantization with
provably least squares error. Our quantization algorithms can be implemented
efficiently on the hardware using bitwise operations. We present proofs to show
that our proposed methods are optimal, and also provide empirical error
analysis. We conduct experiments on the ImageNet dataset and show a reduced
accuracy gap when using the proposed least squares quantization algorithms.
- Abstract(参考訳): ディープニューラルネットワークの重みとアクティベーションの定量化は、精度が低いコストで推論効率を大幅に向上させる。
完全精度モデルと量子化モデルの精度差の源は量子化誤差である。
本研究では,値が-1と1にマップされる二項量子化に着目した。
さまざまなスケーリング戦略を分析するための統一フレームワークを提供します。
2ビットと1ビットの量子化のpareto-optimalityに触発されて、2ビットの量子化を最小二乗誤差として導入する。
量子化アルゴリズムはビット演算を用いてハードウェア上で効率的に実装できる。
本稿では,提案手法が最適であることの証明と,経験的誤り解析を提供する。
我々は、ImageNetデータセット上で実験を行い、提案した最小二乗量子化アルゴリズムを用いて精度のギャップを小さくする。
関連論文リスト
- MixQuant: Mixed Precision Quantization with a Bit-width Optimization
Search [7.564770908909927]
量子化は、効率的なディープニューラルネットワーク(DNN)を作成する技術である
ラウンドオフ誤差に基づいて各層重みに対する最適な量子化ビット幅を求める検索アルゴリズムであるMixQuantを提案する。
我々は、MixQuantと最先端の量子化手法BRECQを組み合わせることで、BRECQ単独よりも優れた量子化モデル精度が得られることを示す。
論文 参考訳(メタデータ) (2023-09-29T15:49:54Z) - Quantum Sparse Coding [5.130440339897477]
我々はスパース符号化のための量子インスピレーション付きアルゴリズムを開発した。
量子コンピュータとイジングマシンの出現は、より正確な推定につながる可能性がある。
我々はLightrの量子インスパイアされたデジタルプラットフォーム上でシミュレーションデータを用いて数値実験を行う。
論文 参考訳(メタデータ) (2022-09-08T13:00:30Z) - Post-training Quantization for Neural Networks with Provable Guarantees [9.58246628652846]
学習後ニューラルネットワーク量子化手法であるGPFQを,欲求経路追従機構に基づいて修正する。
単層ネットワークを定量化するためには、相対二乗誤差は本質的に重み数で線形に減衰する。
論文 参考訳(メタデータ) (2022-01-26T18:47:38Z) - OMPQ: Orthogonal Mixed Precision Quantization [64.59700856607017]
混合精度量子化は、ハードウェアの多重ビット幅演算を利用して、ネットワーク量子化の全ポテンシャルを解き放つ。
本稿では、整数プログラミングの損失と高い相関関係にあるネットワーク性の概念であるプロキシメトリックを最適化することを提案する。
このアプローチは、量子化精度にほとんど妥協することなく、検索時間と必要なデータ量を桁違いに削減する。
論文 参考訳(メタデータ) (2021-09-16T10:59:33Z) - Cluster-Promoting Quantization with Bit-Drop for Minimizing Network
Quantization Loss [61.26793005355441]
クラスタ・プロモーティング・量子化(CPQ)は、ニューラルネットワークに最適な量子化グリッドを見つける。
DropBitsは、ニューロンの代わりにランダムにビットをドロップする標準のドロップアウト正規化を改訂する新しいビットドロップ技術である。
本手法を様々なベンチマークデータセットとネットワークアーキテクチャ上で実験的に検証する。
論文 参考訳(メタデータ) (2021-09-05T15:15:07Z) - n-hot: Efficient bit-level sparsity for powers-of-two neural network
quantization [0.0]
パワーオブツー(PoT)量子化は、リソース制約ハードウェア上でのディープニューラルネットワークのビット演算数を減少させる。
PoT量子化は、表現能力が限られているため、深刻な精度低下を引き起こす。
メモリ効率の高い方法で精度とコストを両立した効率的なPoT量子化方式を提案する。
論文 参考訳(メタデータ) (2021-03-22T10:13:12Z) - DAQ: Distribution-Aware Quantization for Deep Image Super-Resolution
Networks [49.191062785007006]
画像超解像のための深い畳み込みニューラルネットワークの定量化は、計算コストを大幅に削減する。
既存の作業は、4ビット以下の超低精度の厳しい性能低下に苦しむか、または性能を回復するために重い微調整プロセスを必要とします。
高精度なトレーニングフリー量子化を実現する新しい分散認識量子化方式(DAQ)を提案する。
論文 参考訳(メタデータ) (2020-12-21T10:19:42Z) - Searching for Low-Bit Weights in Quantized Neural Networks [129.8319019563356]
低ビットの重みとアクティベーションを持つ量子ニューラルネットワークは、AIアクセラレータを開発する上で魅力的なものだ。
本稿では、任意の量子化ニューラルネットワークにおける離散重みを探索可能な変数とみなし、差分法を用いて正確に探索する。
論文 参考訳(メタデータ) (2020-09-18T09:13:26Z) - Optimal Quantization for Batch Normalization in Neural Network
Deployments and Beyond [18.14282813812512]
バッチ正規化(BN)が量子ニューラルネットワーク(QNN)に挑戦
本稿では、2つの浮動小数点のアフィン変換を共有量子化スケールで固定点演算に変換することによりBNを定量化する新しい方法を提案する。
提案手法は,CIFARおよびImageNetデータセット上の層レベルでの実験により検証される。
論文 参考訳(メタデータ) (2020-08-30T09:33:29Z) - Bayesian Bits: Unifying Quantization and Pruning [73.27732135853243]
我々は、勾配に基づく最適化による混合精度量子化とプルーニングの実用的な方法であるBayesian Bitsを紹介する。
提案手法をいくつかのベンチマーク・データセット上で実験的に検証し,プレナード付き混合精度ネットワークを学習可能であることを示す。
論文 参考訳(メタデータ) (2020-05-14T16:00:34Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
量子化ニューラルネットワーク(QNN)は、非常に安価な計算とストレージオーバーヘッドのため、業界にとって非常に魅力的なものだが、その性能は、完全な精度パラメータを持つネットワークよりも悪い。
既存の手法の多くは、より効果的なトレーニング技術を利用して、特にバイナリニューラルネットワークの性能を高めることを目的としている。
本稿では,従来の完全精度ネットワークで高次元量子化機能に特徴を投影することで,この問題に対処する。
論文 参考訳(メタデータ) (2020-02-03T04:11:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。