On the construction of non-Hermitian Hamiltonians with all-real spectra
through supersymmetric algorithms
- URL: http://arxiv.org/abs/2001.02794v2
- Date: Fri, 10 Jan 2020 16:55:49 GMT
- Title: On the construction of non-Hermitian Hamiltonians with all-real spectra
through supersymmetric algorithms
- Authors: Kevin Zelaya, Sara Cruz y Cruz, and Oscar Rosas-Ortiz
- Abstract summary: The energy spectra of two different quantum systems are paired through supersymmetric algorithms.
One of the systems is Hermitian and the other is characterized by a complex-valued potential.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The energy spectra of two different quantum systems are paired through
supersymmetric algorithms. One of the systems is Hermitian and the other is
characterized by a complex-valued potential, both of them with only real
eigenvalues in their spectrum. The superpotential that links these systems is
complex-valued, parameterized by the solutions of the Ermakov equation, and may
be expressed either in nonlinear form or as the logarithmic derivative of a
properly chosen complex-valued function. The non-Hermitian systems can be
constructed to be either parity-time-symmetric or non-parity-time-symmetric.
Related papers
- Non-equilibrium dynamics of charged dual-unitary circuits [44.99833362998488]
interplay between symmetries and entanglement in out-of-equilibrium quantum systems is currently at the centre of an intense multidisciplinary research effort.
We show that one can introduce a class of solvable states, which extends that of generic dual unitary circuits.
In contrast to the known class of solvable states, which relax to the infinite temperature state, these states relax to a family of non-trivial generalised Gibbs ensembles.
arXiv Detail & Related papers (2024-07-31T17:57:14Z) - Solving the homogeneous Bethe-Salpeter equation with a quantum annealer [34.173566188833156]
The homogeneous Bethe-Salpeter equation (hBSE) was solved for the first time by using a D-Wave quantum annealer.
A broad numerical analysis of the proposed algorithms was carried out using both the proprietary simulated-anneaing package and the D-Wave Advantage 4.1 system.
arXiv Detail & Related papers (2024-06-26T18:12:53Z) - Symmetry-restricted quantum circuits are still well-behaved [45.89137831674385]
We show that quantum circuits restricted by a symmetry inherit the properties of the whole special unitary group $SU(2n)$.
It extends prior work on symmetric states to the operators and shows that the operator space follows the same structure as the state space.
arXiv Detail & Related papers (2024-02-26T06:23:39Z) - Effective size of a parity-time symmetric dimer [0.0]
We show that the complex energy levels of a one-dimensional parityd chain with $N$ PT-dimers are determined by a system size of $1+2N$.
We also discuss the other symmetries of a PT-dimer and PTdimer chain, including non-Hermitian particle-hole symmetry and chiral symmetry.
arXiv Detail & Related papers (2024-01-02T17:44:23Z) - Supersymmetric Quantum Mechanics of Hypergeometric-like Differential
Operators [0.0]
Systematic iterative algorithms of supersymmetric quantum mechanics (SUSYQM) type for solving the eigenequation of principal hypergeometric-like differential operator (HLDO)
These algorithms provide a simple SUSYQM answer to the question regarding why there exist simultaneously a series of principal as well as associated eigenfunctions for the same HLDO.
Due to their relatively high efficiency, algebraic elementariness and logical independence, the iterative SUSYQM algorithms developed in this paper could become the hopefuls for supplanting some traditional methods for solving the eigenvalue problems of principal HLDOs and their associated cousins.
arXiv Detail & Related papers (2023-07-29T09:59:54Z) - Time complexity analysis of quantum algorithms via linear
representations for nonlinear ordinary and partial differential equations [31.986350313948435]
We construct quantum algorithms to compute the solution and/or physical observables of nonlinear ordinary differential equations.
We compare the quantum linear systems algorithms based methods and the quantum simulation methods arising from different numerical approximations.
arXiv Detail & Related papers (2022-09-18T05:50:23Z) - Quantum Mechanics as a Theory of Incompatible Symmetries [77.34726150561087]
We show how classical probability theory can be extended to include any system with incompatible variables.
We show that any probabilistic system (classical or quantal) that possesses incompatible variables will show not only uncertainty, but also interference in its probability patterns.
arXiv Detail & Related papers (2022-05-31T16:04:59Z) - Conserved quantities in non-Hermitian systems via vectorization method [0.0]
We present an alternative way to characterize and derive conserved quantities, or intertwining operators, in open systems.
We also obtain non-Hermitian or Hermitian operators whose expectations values show single exponential time dependence.
Inspired by the Lindblad density matrix equation, our approach provides a useful addition to the well-established methods for characterizing time-invariants in non-Hermitian systems.
arXiv Detail & Related papers (2022-01-13T15:12:11Z) - Exact solutions of interacting dissipative systems via weak symmetries [77.34726150561087]
We analytically diagonalize the Liouvillian of a class Markovian dissipative systems with arbitrary strong interactions or nonlinearity.
This enables an exact description of the full dynamics and dissipative spectrum.
Our method is applicable to a variety of other systems, and could provide a powerful new tool for the study of complex driven-dissipative quantum systems.
arXiv Detail & Related papers (2021-09-27T17:45:42Z) - Two dimensional non-Hermitian harmonic oscillator: coherent states [0.0]
The corresponding time independent Schr"odinger equation yields real eigenvalues with complex eigenfunctions.
We construct the coherent state of the system by using a superposition of 12 eigenfunctions.
arXiv Detail & Related papers (2020-12-08T16:16:04Z) - Non-adiabatic transitions in parabolic and super-parabolic
$\mathcal{PT}$-symmetric non-Hermitian systems [4.4074213830420055]
The dynamics of non-Hermitian systems in the presence of exceptional points differ significantly from those of Hermitian ones.
We identify different transmission dynamics separated by exceptional points, and derive analytical approximate formulas for the non-adiabatic transmission probabilities.
We discuss possible experimental realizations with a $mathcalPmathcalT$-symmetric non-Hermitian one-dimensional tight-binding optical waveguide lattice.
arXiv Detail & Related papers (2020-07-09T07:02:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.