Non-standard quantum algebras and infinite-dimensional PT-symmetric systems
- URL: http://arxiv.org/abs/2504.21833v1
- Date: Wed, 30 Apr 2025 17:40:56 GMT
- Title: Non-standard quantum algebras and infinite-dimensional PT-symmetric systems
- Authors: Ángel Ballesteros, Romina Ramírez, Marta Reboiro,
- Abstract summary: We introduce a PT-symmetric infinite-dimensional representation of the Uz(sl(2,R)) Hopf algebra.<n>It is shown that all these Hamiltonians can be mapped to equivalent systems endowed with a position-dependent mass.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we introduce a PT-symmetric infinite-dimensional representation of the Uz(sl(2,R)) Hopf algebra, and we analyse a multiparametric family of Hamiltonians constructed from such representation of the generators of this non-standard quantum algebra. It is shown that all these Hamiltonians can be mapped to equivalent systems endowed with a position-dependent mass. From the latter presentation, it is shown how appropriate point canonical transformations can be further defined in order to transform them into Hamiltonians with constant mass over suitable domains. By following this approach, the bound-state spectrum and the corresponding eigenfunctions of the initial PT-symmetric Hamiltonians can be determined. It is worth stressing that a relevant feature of some of the new Uz(sl(2,R)) systems here presented is found to be their connection with double-well and P\"oschl-Teller potentials. In fact, as an application we present a particular Hamiltonian that can be expressed as an effective double-well trigonometric potential, which is commonly used to model several relevant systems in molecular physics.
Related papers
- Strong and weak symmetries and their spontaneous symmetry breaking in mixed states emerging from the quantum Ising model under multiple decoherence [0.0]
We study phenomena generated by interplay between two types of decoherence applied to the one-dimensional transverse field Ising model (TFIM)<n>We find various types of mixed states emergent from the ground states of the TFIM.<n>In that study, strong and weak $Z$ symmetries play an important role, for which we introduce efficient order parameters.
arXiv Detail & Related papers (2024-12-17T10:00:29Z) - Entanglement Hamiltonian and orthogonal polynomials [0.0]
We study the entanglement Hamiltonian for free-fermion chains with a particular form of inhomogeneity.
We show that this deformation is interpreted as a local inverse temperature and can be obtained in the continuum limit.
Using this prediction, the properly rescaled eigenvalues of the commuting operator are found to provide a very good approximation of the entanglement spectrum and entropy.
arXiv Detail & Related papers (2024-12-16T17:46:53Z) - Hilbert space geometry and quantum chaos [39.58317527488534]
We consider the symmetric part of the QGT for various multi-parametric random matrix Hamiltonians.
We find for a two-dimensional parameter space that, while the ergodic phase corresponds to the smooth manifold, the integrable limit marks itself as a singular geometry with a conical defect.
arXiv Detail & Related papers (2024-11-18T19:00:17Z) - Quantum Simulation of Nonlinear Dynamical Systems Using Repeated Measurement [42.896772730859645]
We present a quantum algorithm based on repeated measurement to solve initial-value problems for nonlinear ordinary differential equations.
We apply this approach to the classic logistic and Lorenz systems in both integrable and chaotic regimes.
arXiv Detail & Related papers (2024-10-04T18:06:12Z) - Learning Symmetric Hamiltonian [9.79122046962129]
Hamiltonian Learning is a process of recovering system Hamiltonian from measurements.
In this study, we investigate the problem of learning the symmetric Hamiltonian from its eigenstate.
arXiv Detail & Related papers (2024-04-09T01:38:32Z) - Coherence generation with Hamiltonians [44.99833362998488]
We explore methods to generate quantum coherence through unitary evolutions.
This quantity is defined as the maximum derivative of coherence that can be achieved by a Hamiltonian.
We identify the quantum states that lead to the largest coherence derivative induced by the Hamiltonian.
arXiv Detail & Related papers (2024-02-27T15:06:40Z) - Non-standard quantum algebras and finite dimensional
$\mathcal{PT}$-symmetric systems [0.0]
We study the spectrum of a family of non-Hermitian Hamiltonians written in terms of the generators of the non-standard $U_z(sl(2, mathbb R))$ Hopf algebra deformation.
We show that this non-standard quantum algebra can be used to define an effective model Hamiltonian describing accurately the experimental spectra of three-electron hybrid qubits.
arXiv Detail & Related papers (2023-09-26T23:17:22Z) - Recovery of a generic local Hamiltonian from a degenerate steady state [11.567029926262476]
Hamiltonian Learning (HL) is essential for validating quantum systems in quantum computing.
HL success depends on the Hamiltonian model and steady state.
We analyze HL for a specific type of steady state composed of eigenstates with degenerate mixing weight.
arXiv Detail & Related papers (2023-09-01T08:40:50Z) - Extension of exactly-solvable Hamiltonians using symmetries of Lie
algebras [0.0]
We show that a linear combination of operators forming a modest size Lie algebra can be substituted by determinants of the Lie algebra symmetries.
The new class of solvable Hamiltonians can be measured efficiently using quantum circuits with gates that depend on the result of a mid-circuit measurement of the symmetries.
arXiv Detail & Related papers (2023-05-29T17:19:56Z) - When can a local Hamiltonian be recovered from a steady state? [11.031662961887243]
Hamiltonians of two spin chains with 2-local interactions and 3-local interactions can be recovered by measuring local observables.
We show that when the chain length reaches a certain critical number, we can recover the local Hamiltonian from its one steady state by solving the homogeneous operator equation (HOE)
To explain the existence of such a critical chain length, we develop an alternative method to recover Hamiltonian by solving the energy eigenvalue equations (EEE)
arXiv Detail & Related papers (2021-09-16T02:37:17Z) - Modular Operators and Entanglement in Supersymmetric Quantum Mechanics [9.850972494562512]
Theory is applied to the case of two-dimensional Dirac fermions, as is found in graphene, and a supersymmetric Jaynes Cummings Model.
arXiv Detail & Related papers (2021-03-10T21:52:14Z) - Quasi-symmetry groups and many-body scar dynamics [13.95461883391858]
In quantum systems, a subspace spanned by degenerate eigenvectors of the Hamiltonian may have higher symmetries than those of the Hamiltonian itself.
When the group is a Lie group, an external field coupled to certain generators of the quasi-symmetry group lifts the degeneracy.
We provide two related schemes for constructing one-dimensional spin models having on-demand quasi-symmetry groups.
arXiv Detail & Related papers (2020-07-20T18:05:21Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Experimental simulation of the Parity-Time-symmetric dynamics using
photonics qubits [7.67529162088556]
We experimentally demonstrate the general dynamical evolution of a two-level system under the action of PT symmetric Hamiltonian.
Our work provides a route for further exploiting the exotic properties of PT symmetric Hamiltonian for quantum simulation and quantum information processing.
arXiv Detail & Related papers (2020-04-19T23:08:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.