GRIDS: Interactive Layout Design with Integer Programming
- URL: http://arxiv.org/abs/2001.02921v1
- Date: Thu, 9 Jan 2020 11:08:15 GMT
- Title: GRIDS: Interactive Layout Design with Integer Programming
- Authors: Niraj Dayama, Kashyap Todi, Taru Saarelainen, Antti Oulasvirta
- Abstract summary: This paper proposes a novel optimisation approach for the generation of grid-based layouts.
Our mixed integer linear programming (MILP) model offers a rigorous yet efficient method for grid generation.
We present techniques for interactive diversification, enhancement, and completion of grid layouts.
- Score: 25.88822318048848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Grid layouts are used by designers to spatially organise user interfaces when
sketching and wireframing. However, their design is largely time consuming
manual work. This is challenging due to combinatorial explosion and complex
objectives, such as alignment, balance, and expectations regarding positions.
This paper proposes a novel optimisation approach for the generation of diverse
grid-based layouts. Our mixed integer linear programming (MILP) model offers a
rigorous yet efficient method for grid generation that ensures packing,
alignment, grouping, and preferential positioning of elements. Further, we
present techniques for interactive diversification, enhancement, and completion
of grid layouts (Figure 1). These capabilities are demonstrated using GRIDS1, a
wireframing tool that provides designers with real-time layout suggestions. We
report findings from a ratings study (N = 13) and a design study (N = 16),
lending evidence for the benefit of computational grid generation during early
stages of design.
Related papers
- GLDesigner: Leveraging Multi-Modal LLMs as Designer for Enhanced Aesthetic Text Glyph Layouts [53.568057283934714]
We propose a VLM-based framework that generates content-aware text logo layouts.
We introduce two model techniques to reduce the computation for processing multiple glyph images simultaneously.
To support instruction-tuning of out model, we construct two extensive text logo datasets, which are 5x more larger than the existing public dataset.
arXiv Detail & Related papers (2024-11-18T10:04:10Z) - PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
Our research introduces a unified framework for automated graphic layout generation.
Our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts.
We conduct extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks.
arXiv Detail & Related papers (2024-06-05T03:05:52Z) - Graphic Design with Large Multimodal Model [38.96206668552293]
Hierarchical Layout Generation (HLG) is a more flexible and pragmatic setup, which creates graphic composition from unordered sets of design elements.
To tackle the HLG task, we introduce Graphist, the first layout generation model based on large multimodal models.
Graphist efficiently reframes the HLG as a sequence generation problem, utilizing RGB-A images as input.
arXiv Detail & Related papers (2024-04-22T17:20:38Z) - Compositional Generative Inverse Design [69.22782875567547]
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem.
We show that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples.
In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes.
arXiv Detail & Related papers (2024-01-24T01:33:39Z) - PosterLayout: A New Benchmark and Approach for Content-aware
Visual-Textual Presentation Layout [62.12447593298437]
Content-aware visual-textual presentation layout aims at arranging spatial space on the given canvas for pre-defined elements.
We propose design sequence formation (DSF) that reorganizes elements in layouts to imitate the design processes of human designers.
A novel CNN-LSTM-based conditional generative adversarial network (GAN) is presented to generate proper layouts.
arXiv Detail & Related papers (2023-03-28T12:48:36Z) - LayoutDiffusion: Improving Graphic Layout Generation by Discrete
Diffusion Probabilistic Models [50.73105631853759]
We present a novel generative model named LayoutDiffusion for automatic layout generation.
It learns to reverse a mild forward process, in which layouts become increasingly chaotic with the growth of forward steps.
It enables two conditional layout generation tasks in a plug-and-play manner without re-training and achieves better performance than existing methods.
arXiv Detail & Related papers (2023-03-21T04:41:02Z) - PLay: Parametrically Conditioned Layout Generation using Latent
Diffusion [18.130461065261354]
We build a conditional latent diffusion model, PLay, that generates parametrically conditioned layouts in vector graphic space from user-specified guidelines.
Our method outperforms prior works across three datasets on metrics including FID and FD-VG, and in user study.
arXiv Detail & Related papers (2023-01-27T04:22:27Z) - LayoutDETR: Detection Transformer Is a Good Multimodal Layout Designer [80.61492265221817]
Graphic layout designs play an essential role in visual communication.
Yet handcrafting layout designs is skill-demanding, time-consuming, and non-scalable to batch production.
Generative models emerge to make design automation scalable but it remains non-trivial to produce designs that comply with designers' desires.
arXiv Detail & Related papers (2022-12-19T21:57:35Z) - Constrained Graphic Layout Generation via Latent Optimization [17.05026043385661]
We generate graphic layouts that can flexibly incorporate design semantics, either specified implicitly or explicitly by a user.
Our approach builds on a generative layout model based on a Transformer architecture, and formulates the layout generation as a constrained optimization problem.
We show in the experiments that our approach is capable of generating realistic layouts in both constrained and unconstrained generation tasks with a single model.
arXiv Detail & Related papers (2021-08-02T13:04:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.