PosterLayout: A New Benchmark and Approach for Content-aware
Visual-Textual Presentation Layout
- URL: http://arxiv.org/abs/2303.15937v1
- Date: Tue, 28 Mar 2023 12:48:36 GMT
- Title: PosterLayout: A New Benchmark and Approach for Content-aware
Visual-Textual Presentation Layout
- Authors: HsiaoYuan Hsu, Xiangteng He, Yuxin Peng, Hao Kong and Qing Zhang
- Abstract summary: Content-aware visual-textual presentation layout aims at arranging spatial space on the given canvas for pre-defined elements.
We propose design sequence formation (DSF) that reorganizes elements in layouts to imitate the design processes of human designers.
A novel CNN-LSTM-based conditional generative adversarial network (GAN) is presented to generate proper layouts.
- Score: 62.12447593298437
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Content-aware visual-textual presentation layout aims at arranging spatial
space on the given canvas for pre-defined elements, including text, logo, and
underlay, which is a key to automatic template-free creative graphic design. In
practical applications, e.g., poster designs, the canvas is originally
non-empty, and both inter-element relationships as well as inter-layer
relationships should be concerned when generating a proper layout. A few recent
works deal with them simultaneously, but they still suffer from poor graphic
performance, such as a lack of layout variety or spatial non-alignment. Since
content-aware visual-textual presentation layout is a novel task, we first
construct a new dataset named PosterLayout, which consists of 9,974
poster-layout pairs and 905 images, i.e., non-empty canvases. It is more
challenging and useful for greater layout variety, domain diversity, and
content diversity. Then, we propose design sequence formation (DSF) that
reorganizes elements in layouts to imitate the design processes of human
designers, and a novel CNN-LSTM-based conditional generative adversarial
network (GAN) is presented to generate proper layouts. Specifically, the
discriminator is design-sequence-aware and will supervise the "design" process
of the generator. Experimental results verify the usefulness of the new
benchmark and the effectiveness of the proposed approach, which achieves the
best performance by generating suitable layouts for diverse canvases.
Related papers
- PosterLLaVa: Constructing a Unified Multi-modal Layout Generator with LLM [58.67882997399021]
Our research introduces a unified framework for automated graphic layout generation.
Our data-driven method employs structured text (JSON format) and visual instruction tuning to generate layouts.
We conduct extensive experiments and achieved state-of-the-art (SOTA) performance on public multi-modal layout generation benchmarks.
arXiv Detail & Related papers (2024-06-05T03:05:52Z) - PosterLlama: Bridging Design Ability of Langauge Model to Contents-Aware Layout Generation [6.855409699832414]
PosterLlama is a network designed for generating visually and textually coherent layouts.
Our evaluations demonstrate that PosterLlama outperforms existing methods in producing authentic and content-aware layouts.
It supports an unparalleled range of conditions, including but not limited to unconditional layout generation, element conditional layout generation, layout completion, among others, serving as a highly versatile user manipulation tool.
arXiv Detail & Related papers (2024-04-01T08:46:35Z) - Desigen: A Pipeline for Controllable Design Template Generation [69.51563467689795]
Desigen is an automatic template creation pipeline which generates background images as well as layout elements over the background.
We propose two techniques to constrain the saliency distribution and reduce the attention weight in desired regions during the background generation process.
Experiments demonstrate that the proposed pipeline generates high-quality templates comparable to human designers.
arXiv Detail & Related papers (2024-03-14T04:32:28Z) - A Parse-Then-Place Approach for Generating Graphic Layouts from Textual
Descriptions [50.469491454128246]
We use text as the guidance to create graphic layouts, i.e., Text-to-labeled, aiming to lower the design barriers.
Text-to-labeled is a challenging task, because it needs to consider the implicit, combined, and incomplete constraints from text.
We present a two-stage approach, named parse-then-place, to address this problem.
arXiv Detail & Related papers (2023-08-24T10:37:00Z) - LayoutDETR: Detection Transformer Is a Good Multimodal Layout Designer [80.61492265221817]
Graphic layout designs play an essential role in visual communication.
Yet handcrafting layout designs is skill-demanding, time-consuming, and non-scalable to batch production.
Generative models emerge to make design automation scalable but it remains non-trivial to produce designs that comply with designers' desires.
arXiv Detail & Related papers (2022-12-19T21:57:35Z) - Geometry Aligned Variational Transformer for Image-conditioned Layout
Generation [38.747175229902396]
We propose an Image-Conditioned Variational Transformer (ICVT) that autoregressively generates various layouts in an image.
First, self-attention mechanism is adopted to model the contextual relationship within layout elements, while cross-attention mechanism is used to fuse the visual information of conditional images.
We construct a large-scale advertisement poster layout designing dataset with delicate layout and saliency map annotations.
arXiv Detail & Related papers (2022-09-02T07:19:12Z) - Composition-aware Graphic Layout GAN for Visual-textual Presentation
Designs [24.29890251913182]
We study the graphic layout generation problem of producing high-quality visual-textual presentation designs for given images.
We propose a deep generative model, dubbed as composition-aware graphic layout GAN (CGL-GAN), to synthesize layouts based on the global and spatial visual contents of input images.
arXiv Detail & Related papers (2022-04-30T16:42:13Z) - Constrained Graphic Layout Generation via Latent Optimization [17.05026043385661]
We generate graphic layouts that can flexibly incorporate design semantics, either specified implicitly or explicitly by a user.
Our approach builds on a generative layout model based on a Transformer architecture, and formulates the layout generation as a constrained optimization problem.
We show in the experiments that our approach is capable of generating realistic layouts in both constrained and unconstrained generation tasks with a single model.
arXiv Detail & Related papers (2021-08-02T13:04:11Z) - LayoutTransformer: Layout Generation and Completion with Self-attention [105.21138914859804]
We address the problem of scene layout generation for diverse domains such as images, mobile applications, documents, and 3D objects.
We propose LayoutTransformer, a novel framework that leverages self-attention to learn contextual relationships between layout elements.
Our framework allows us to generate a new layout either from an empty set or from an initial seed set of primitives, and can easily scale to support an arbitrary of primitives per layout.
arXiv Detail & Related papers (2020-06-25T17:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.