Multiplexed photon number measurement
- URL: http://arxiv.org/abs/2001.03217v3
- Date: Fri, 2 Jul 2021 12:08:55 GMT
- Title: Multiplexed photon number measurement
- Authors: Antoine Essig, Quentin Ficheux, Th\'eau Peronnin, Nathana\"el Cottet,
Rapha\"el Lescanne, Alain Sarlette, Pierre Rouchon, Zaki Leghtas, Benjamin
Huard
- Abstract summary: We propose a method where a single qubit is able to extract many bits of information about a microwave resonator using continuous measurement.
We realize a proof-of-principle experiment by recording the fluorescence emitted by a superconducting qubit.
Our experiment unleashes the full potential of quantum meters by replacing a sequential quantum measurements with simultaneous and continuous measurements separated in the frequency domain.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When a two-level system -- a qubit -- is used as a probe of a larger system,
it naturally leads to answering a single yes-no question about the system
state. Here we propose a method where a single qubit is able to extract, not a
single, but many bits of information about the photon number of a microwave
resonator using continuous measurement. We realize a proof-of-principle
experiment by recording the fluorescence emitted by a superconducting qubit
reflecting a frequency comb, thus implementing multiplexed photon counting
where the information about each Fock state -- from 0 to 8 -- is simultaneously
encoded in independent measurement channels. Direct Wigner tomography of the
quantum state of the resonator evidences the back-action of the measurement as
well as the optimal information extraction parameters. Our experiment unleashes
the full potential of quantum meters by replacing a sequential quantum
measurements with simultaneous and continuous measurements separated in the
frequency domain.
Related papers
- Entanglement of photonic modes from a continuously driven two-level system [34.50067763557076]
We experimentally generate entangled photonic modes by continuously exciting a quantum emitter, a superconducting qubit, with a coherent drive.
We show that entanglement is generated between modes extracted from the two sidebands of the resonance fluorescence spectrum.
Our approach can be utilized to distribute entanglement at a high rate in various physical platforms.
arXiv Detail & Related papers (2024-07-10T18:48:41Z) - Universal quantum frequency comb measurements by spectral mode-matching [39.58317527488534]
We present the first general approach to make arbitrary, one-shot measurements of a multimode quantum optical source.
This approach uses spectral mode-matching, which can be understood as interferometry with a memory effect.
arXiv Detail & Related papers (2024-05-28T15:17:21Z) - Monitoring the energy of a cavity by observing the emission of a
repeatedly excited qubit [0.0]
We present an experiment that reaches single shot photocounting and number tracking owing to a cavity decay rate 4 orders of magnitude smaller than both the dispersive coupling rate and the qubit emission rate.
We observe quantum jumps by monitoring the photon number via the qubit fluorescence as photons leave the cavity one at a time.
arXiv Detail & Related papers (2024-02-07T17:38:00Z) - Evolution of many-body systems under ancilla quantum measurements [58.720142291102135]
We study the concept of implementing quantum measurements by coupling a many-body lattice system to an ancillary degree of freedom.
We find evidence of a disentangling-entangling measurement-induced transition as was previously observed in more abstract models.
arXiv Detail & Related papers (2023-03-13T13:06:40Z) - Quantum emulation of the transient dynamics in the multistate
Landau-Zener model [50.591267188664666]
We study the transient dynamics in the multistate Landau-Zener model as a function of the Landau-Zener velocity.
Our experiments pave the way for more complex simulations with qubits coupled to an engineered bosonic mode spectrum.
arXiv Detail & Related papers (2022-11-26T15:04:11Z) - Observation of partial and infinite-temperature thermalization induced
by repeated measurements on a quantum hardware [62.997667081978825]
We observe partial and infinite-temperature thermalization on a quantum superconducting processor.
We show that the convergence does not tend to a completely mixed (infinite-temperature) state, but to a block-diagonal state in the observable basis.
arXiv Detail & Related papers (2022-11-14T15:18:11Z) - Microwave-frequency scanning gate microscopy of a Si/SiGe double quantum
dot [0.0]
We combine scanning probe microscopy with the speed of microwave measurements in a Si/SiGe quantum dot.
We resolve $sim$65 $mu$eV excited states, an energy scale consistent with typical valley splittings in Si/SiGe.
Future extensions of this approach may allow spatial mapping of the valley splitting in Si devices.
arXiv Detail & Related papers (2022-03-11T13:31:12Z) - Visualizing spinon Fermi surfaces with time-dependent spectroscopy [62.997667081978825]
We propose applying time-dependent photo-emission spectroscopy, an established tool in solid state systems, in cold atom quantum simulators.
We show in exact diagonalization simulations of the one-dimensional $t-J$ model that the spinons start to populate previously unoccupied states in an effective band structure.
The dependence of the spectral function on the time after the pump pulse reveals collective interactions among spinons.
arXiv Detail & Related papers (2021-05-27T18:00:02Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Superposition of two-mode squeezed states for quantum information
processing and quantum sensing [55.41644538483948]
We investigate superpositions of two-mode squeezed states (TMSSs)
TMSSs have potential applications to quantum information processing and quantum sensing.
arXiv Detail & Related papers (2021-02-01T18:09:01Z) - High-Fidelity Measurement of a Superconducting Qubit using an On-Chip
Microwave Photon Counter [0.0]
We describe an approach to the high-fidelity measurement of a superconducting qubit using an on-chip microwave photon counter.
We achieve raw single-shot measurement in excess of 98% across multiple samples using this approach in total measurement times under 500 ns.
arXiv Detail & Related papers (2020-08-05T20:20:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.