論文の概要: RSL-Net: Localising in Satellite Images From a Radar on the Ground
- arxiv url: http://arxiv.org/abs/2001.03233v2
- Date: Thu, 6 Feb 2020 19:45:16 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-13 05:31:53.943864
- Title: RSL-Net: Localising in Satellite Images From a Radar on the Ground
- Title(参考訳): RSL-Net:地上のレーダーから撮影した衛星画像
- Authors: Tim Y. Tang, Daniele De Martini, Dan Barnes, Paul Newman
- Abstract要約: 本論文は,地上車両に搭載されたFMCWレーダを用いた頭上画像における車両位置決めについて述べる。
この作業では、レーダベースのマップの必要性を排除し、オーバヘッドイメージを単純に使用します。
- 参考スコア(独自算出の注目度): 23.413282280934954
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper is about localising a vehicle in an overhead image using FMCW
radar mounted on a ground vehicle. FMCW radar offers extraordinary promise and
efficacy for vehicle localisation. It is impervious to all weather types and
lighting conditions. However the complexity of the interactions between
millimetre radar wave and the physical environment makes it a challenging
domain. Infrastructure-free large-scale radar-based localisation is in its
infancy. Typically here a map is built and suitable techniques, compatible with
the nature of sensor, are brought to bear. In this work we eschew the need for
a radar-based map; instead we simply use an overhead image -- a resource
readily available everywhere. This paper introduces a method that not only
naturally deals with the complexity of the signal type but does so in the
context of cross modal processing.
- Abstract(参考訳): 本論文は,地上車両に搭載されたFMCWレーダを用いた頭上画像における車両位置決めについて述べる。
FMCWレーダーは、車両のローカライゼーションに異常な約束と有効性を提供する。
全ての天候や照明条件に不注意である。
しかし、ミリメートルのレーダー波と物理的環境の間の相互作用の複雑さは、難しい領域となっている。
インフラストラクチャフリーの大規模なレーダーベースのローカライズが初期段階にある。
典型的には地図が作られ、センサーの性質と互換性のある適切な技術が身につけられる。
この作業では、レーダーベースのマップの必要性を排除しました。
本稿では,信号タイプの複雑さを自然に扱うだけでなく,クロスモーダル処理の文脈でそれを行う手法を提案する。
関連論文リスト
- Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar [62.51065633674272]
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
論文 参考訳(メタデータ) (2024-05-07T20:44:48Z) - Bootstrapping Autonomous Driving Radars with Self-Supervised Learning [13.13679517730015]
レーダモデルの訓練は、大規模レーダデータの注釈付けのコストと難しさによって妨げられている。
本研究では,未ラベルのレーダデータを事前学習型レーダのみの埋め込みに活用して,自律型認識タスクを実現するための自己教師型学習フレームワークを提案する。
下流オブジェクト検出に使用する場合、提案するセルフスーパービジョンフレームワークが、最先端の教師付きベースラインの精度をmAPで5.8%向上できることを実証する。
論文 参考訳(メタデータ) (2023-12-07T18:38:39Z) - TransRadar: Adaptive-Directional Transformer for Real-Time Multi-View
Radar Semantic Segmentation [21.72892413572166]
本稿では,レーダデータの多入力融合を用いたレーダシーンのセマンティックセマンティックセマンティクスへの新しいアプローチを提案する。
提案手法であるTransRadarは,CARRADAとRADIalのデータセット上で最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-10-03T17:59:05Z) - Pointing the Way: Refining Radar-Lidar Localization Using Learned ICP Weights [10.613476233222347]
高レベルスキャン情報に基づいてレーダポイントを重み付けする学習前処理ステップを含むICPベースのレーダライダーローカライゼーションを構築した。
重み付けネットワークをトレーニングするために,新しい,スタンドアローンでオープンソースの差別化可能なICPライブラリを提案する。
論文 参考訳(メタデータ) (2023-09-15T19:37:58Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - Energy-Based Models for Cross-Modal Localization using Convolutional
Transformers [52.27061799824835]
GPSのない衛星画像に対して、距離センサを搭載した地上車両を位置決めする新しい枠組みを提案する。
本稿では, 畳み込み変換器を用いて, 高精度な計量レベルの局所化を行う手法を提案する。
我々は、エンドツーエンドでモデルをトレーニングし、KITTI、Pandaset、カスタムデータセットの最先端技術よりも高い精度でアプローチを実証する。
論文 参考訳(メタデータ) (2023-06-06T21:27:08Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - RadarLoc: Learning to Relocalize in FMCW Radar [36.68888832365474]
6-DoFのグローバルポーズを直接推定できる,自己アテンションを備えた新しいエンドツーエンドニューラルネットワークであるRadarLocを提案する。
我々は最近リリースされた屋外データセットOxford Radar RobotCarに対するアプローチを検証する。
論文 参考訳(メタデータ) (2021-03-22T03:22:37Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RaLL: End-to-end Radar Localization on Lidar Map Using Differentiable
Measurement Model [14.155337185792279]
ライダーマップ(RaLL)上でのレーダローカライゼーションのためのエンドツーエンドディープラーニングフレームワークを提案する。
RaLLは成熟ライダーマッピング技術を利用しており、レーダマッピングのコストを低減している。
提案システムは,英国におけるモデルトレーニングの一般化シナリオにおいても,90km以上の運転性能を実現する。
論文 参考訳(メタデータ) (2020-09-15T13:13:38Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。