論文の概要: Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar
- arxiv url: http://arxiv.org/abs/2405.04662v2
- Date: Thu, 9 May 2024 19:23:44 GMT
- ステータス: 処理完了
- システム内更新日: 2024-05-13 11:22:39.485042
- Title: Radar Fields: Frequency-Space Neural Scene Representations for FMCW Radar
- Title(参考訳): レーダ場:FMCWレーダのための周波数空間ニューラルシーン表現
- Authors: David Borts, Erich Liang, Tim Brödermann, Andrea Ramazzina, Stefanie Walz, Edoardo Palladin, Jipeng Sun, David Bruggemann, Christos Sakaridis, Luc Van Gool, Mario Bijelic, Felix Heide,
- Abstract要約: 本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法では,暗黙的ニューラルジオメトリとリフレクタンスモデルを用いて,暗黙的な物理インフォームドセンサモデルを構築し,生のレーダ測定を直接合成する。
本研究では,密集した車両やインフラを備えた都市景観を含む,多様な屋外シナリオにおける手法の有効性を検証する。
- 参考スコア(独自算出の注目度): 62.51065633674272
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Neural fields have been broadly investigated as scene representations for the reproduction and novel generation of diverse outdoor scenes, including those autonomous vehicles and robots must handle. While successful approaches for RGB and LiDAR data exist, neural reconstruction methods for radar as a sensing modality have been largely unexplored. Operating at millimeter wavelengths, radar sensors are robust to scattering in fog and rain, and, as such, offer a complementary modality to active and passive optical sensing techniques. Moreover, existing radar sensors are highly cost-effective and deployed broadly in robots and vehicles that operate outdoors. We introduce Radar Fields - a neural scene reconstruction method designed for active radar imagers. Our approach unites an explicit, physics-informed sensor model with an implicit neural geometry and reflectance model to directly synthesize raw radar measurements and extract scene occupancy. The proposed method does not rely on volume rendering. Instead, we learn fields in Fourier frequency space, supervised with raw radar data. We validate the effectiveness of the method across diverse outdoor scenarios, including urban scenes with dense vehicles and infrastructure, and in harsh weather scenarios, where mm-wavelength sensing is especially favorable.
- Abstract(参考訳): ニューラルフィールドは、自律走行車やロボットが扱わなければならない様々な屋外シーンの再現と創出のためのシーン表現として広く研究されている。
RGB と LiDAR のデータに対するアプローチは成功したが、レーダーの知覚モーダリティとしてのニューラル再構成法はほとんど研究されていない。
ミリ波長で動作するレーダーセンサーは、霧や雨の散乱に対して堅牢であり、アクティブで受動的な光センシング技術と相補的なモダリティを提供する。
さらに、既存のレーダーセンサーはコスト効率が高く、屋外で動作するロボットや車両に広く展開されている。
本稿では,アクティブレーダイメージア用に設計されたニューラルシーン再構成手法であるRadar Fieldsを紹介する。
提案手法は, 暗黙的ニューラルジオメトリーと反射率モデルを用いて, 露骨な物理インフォームドセンサモデルを結合し, 生のレーダ測定を直接合成し, シーン占有率を抽出する。
提案手法はボリュームレンダリングに依存しない。
代わりに、フーリエ周波数空間のフィールドを学習し、生のレーダーデータで監視する。
本手法は,高密度車両やインフラを有する都市景観や,特にミリ波センシングが好まれる厳しい気象シナリオなど,様々な屋外シナリオにおける有効性を検証する。
関連論文リスト
- RadarOcc: Robust 3D Occupancy Prediction with 4D Imaging Radar [15.776076554141687]
3D占有に基づく知覚パイプラインは、かなり進歩した自律運転を持つ。
現在の方法では、LiDARやカメラの入力を3D占有率予測に頼っている。
本稿では,4次元イメージングレーダセンサを用いた3次元占有予測手法を提案する。
論文 参考訳(メタデータ) (2024-05-22T21:48:17Z) - Diffusion-Based Point Cloud Super-Resolution for mmWave Radar Data [8.552647576661174]
ミリ波レーダセンサは、環境条件下では安定した性能を維持している。
レーダー点雲は比較的希薄で、巨大なゴーストポイントを含んでいる。
本稿では3次元ミリ波レーダデータに対する新しい点雲超解像法,Radar-diffusionを提案する。
論文 参考訳(メタデータ) (2024-04-09T04:41:05Z) - TransRadar: Adaptive-Directional Transformer for Real-Time Multi-View
Radar Semantic Segmentation [21.72892413572166]
本稿では,レーダデータの多入力融合を用いたレーダシーンのセマンティックセマンティックセマンティクスへの新しいアプローチを提案する。
提案手法であるTransRadarは,CARRADAとRADIalのデータセット上で最先端の手法より優れている。
論文 参考訳(メタデータ) (2023-10-03T17:59:05Z) - Echoes Beyond Points: Unleashing the Power of Raw Radar Data in
Multi-modality Fusion [74.84019379368807]
本稿では,既存のレーダ信号処理パイプラインをスキップするEchoFusionという新しい手法を提案する。
具体的には、まずBird's Eye View (BEV)クエリを生成し、次にレーダーから他のセンサーとフューズに対応するスペクトル特徴を取ります。
論文 参考訳(メタデータ) (2023-07-31T09:53:50Z) - RadarFormer: Lightweight and Accurate Real-Time Radar Object Detection
Model [13.214257841152033]
レーダー中心のデータセットは、レーダー知覚のためのディープラーニング技術の開発にはあまり注目されていない。
本稿では,視覚深層学習における最先端技術を活用したトランスフォーマーモデルRadarFormerを提案する。
また、チャネルチャープ時マージモジュールを導入し、精度を損なうことなく、モデルのサイズと複雑さを10倍以上に削減する。
論文 参考訳(メタデータ) (2023-04-17T17:07:35Z) - NVRadarNet: Real-Time Radar Obstacle and Free Space Detection for
Autonomous Driving [57.03126447713602]
本稿では,自動車のRADARセンサを用いて動的障害物や乾燥可能な自由空間を検出するディープニューラルネットワーク(DNN)を提案する。
ネットワークは組み込みGPU上でリアルタイムよりも高速に動作し、地理的領域にわたって優れた一般化を示す。
論文 参考訳(メタデータ) (2022-09-29T01:30:34Z) - Pointillism: Accurate 3D bounding box estimation with multi-radars [6.59119432945925]
我々は、複数の空間的に分離されたレーダーからのデータと、これらの問題を緩和するための最適な分離を結合するシステムであるPointillismを紹介する。
本稿では,レーダのスパースデータ分布を明示的に設計した新しいディープラーニングアーキテクチャRP-netの設計を行い,高精度な3次元境界ボックス推定を実現する。
論文 参考訳(メタデータ) (2022-03-08T23:09:58Z) - Complex-valued Convolutional Neural Networks for Enhanced Radar Signal
Denoising and Interference Mitigation [73.0103413636673]
本稿では,レーダセンサ間の相互干渉問題に対処するために,複合価値畳み込みニューラルネットワーク(CVCNN)を提案する。
CVCNNはデータ効率を高め、ネットワークトレーニングを高速化し、干渉除去時の位相情報の保存を大幅に改善する。
論文 参考訳(メタデータ) (2021-04-29T10:06:29Z) - LiRaNet: End-to-End Trajectory Prediction using Spatio-Temporal Radar
Fusion [52.59664614744447]
本稿では,レーダセンサ情報と広範に使用されているライダーと高精細度(HD)マップを用いた新しい終端軌道予測手法LiRaNetを提案する。
自動車レーダーは、リッチで補完的な情報を提供し、より長い距離の車両検出と即時速度測定を可能にします。
論文 参考訳(メタデータ) (2020-10-02T00:13:00Z) - RadarNet: Exploiting Radar for Robust Perception of Dynamic Objects [73.80316195652493]
我々は、自動運転車の文脈における認識のためにRadarを利用する問題に取り組む。
我々は、LiDARとRadarの両方のセンサーを知覚に利用した新しいソリューションを提案する。
RadarNetと呼ばれる我々のアプローチは、ボクセルベースの早期核融合と注意に基づく後期核融合を特徴としている。
論文 参考訳(メタデータ) (2020-07-28T17:15:02Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。