論文の概要: SUPAID: A Rule mining based method for automatic rollout decision aid
for supervisors in fleet management systems
- arxiv url: http://arxiv.org/abs/2001.03386v2
- Date: Wed, 15 Jan 2020 05:34:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 22:37:44.857868
- Title: SUPAID: A Rule mining based method for automatic rollout decision aid
for supervisors in fleet management systems
- Title(参考訳): supaid:艦隊管理システムにおける監督者自動ロールアウト決定支援のためのルールマイニング方式
- Authors: Sahil Manchanda, Arun Rajkumar, Simarjot Kaur, Narayanan Unny
- Abstract要約: 本稿では, 車両のロールアウト実現可能性に基づいて, ルールマイニング手法を用いて, 自然の「一方的効率」を仮定した新しい学習アルゴリズムSUPAIDを提案する。
米国市内の公共交通機関による実データによる実験結果から,SuPAIDの提案手法がコスト削減に寄与する可能性が示唆された。
- 参考スコア(独自算出の注目度): 2.782396962787398
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The decision to rollout a vehicle is critical to fleet management companies
as wrong decisions can lead to additional cost of maintenance and failures
during journey. With the availability of large amount of data and advancement
of machine learning techniques, the rollout decisions of a supervisor can be
effectively automated and the mistakes in decisions made by the supervisor
learnt. In this paper, we propose a novel learning algorithm SUPAID which under
a natural 'one-way efficiency' assumption on the supervisor, uses a rule mining
approach to rank the vehicles based on their roll-out feasibility thus helping
prevent the supervisor from makingerroneous decisions. Our experimental results
on real data from a public transit agency from a city in U.S show that the
proposed method SUPAID can result in significant cost savings.
- Abstract(参考訳): 車両のロールアウトの決定は、間違った判断は、旅行中のメンテナンスと障害のコストを増加させる可能性があるため、車両管理会社にとって重要である。
大量のデータの提供と機械学習技術の進歩により、監督者のロールアウト決定を効果的に自動化し、監督者が学習した判断の誤りを解消することができる。
本稿では,ルールマイニング手法を用いて車両のロールアウト実現可能性に基づいて車両のランク付けを行い,監督者が誤った判断をしないようにするための学習アルゴリズムを提案する。
米国市内の公共交通機関による実データによる実験結果から,SuPAIDの提案手法がコスト削減に寄与する可能性が示唆された。
関連論文リスト
- DriveCoT: Integrating Chain-of-Thought Reasoning with End-to-End Driving [81.04174379726251]
本稿では,DriveCoTというエンド・ツー・エンドの運転データセットを総合的に収集する。
センサーデータ、制御決定、および推論プロセスを示すチェーン・オブ・シークレット・ラベルが含まれている。
我々は,私たちのデータセットに基づいてトレーニングされたDriveCoT-Agentと呼ばれるベースラインモデルを提案し,連鎖予測と最終決定を生成する。
論文 参考訳(メタデータ) (2024-03-25T17:59:01Z) - Optimising Human-AI Collaboration by Learning Convincing Explanations [62.81395661556852]
本研究では,人間による意思決定によって安全を保ちながら協調的なシステムを構築する手法を提案する。
Ardentは、説明のための個人の好みに適応することで、効率的で効果的な意思決定を可能にする。
論文 参考訳(メタデータ) (2023-11-13T16:00:16Z) - Accountability in Offline Reinforcement Learning: Explaining Decisions
with a Corpus of Examples [70.84093873437425]
本稿では、オフラインデータセットを決定コーパスとして利用するAOC(Accountable Offline Controller)を紹介する。
AOCはローデータシナリオで効果的に動作し、厳密なオフラインの模倣設定まで拡張でき、保存性と適応性の両方の品質を示す。
シミュレーションおよび実世界の医療シナリオにおいて、AOCのパフォーマンスを評価し、説明責任を維持しながら高いレベルのパフォーマンスでオフライン制御タスクを管理する能力を強調した。
論文 参考訳(メタデータ) (2023-10-11T17:20:32Z) - Rational Decision-Making Agent with Internalized Utility Judgment [91.80700126895927]
大規模言語モデル(LLM)は目覚ましい進歩を示し、従来のNLPアプリケーションを超えて複雑な多段階決定タスクを実行できるエージェントにLLMを開発するための重要な努力を惹きつけている。
本稿では,RadAgentを提案する。このRadAgentは,経験探索とユーティリティ学習を含む反復的なフレームワークを通じて,合理性の発展を促進する。
ToolBenchデータセットの実験結果は、RadAgentがベースラインよりも優れていることを示している。
論文 参考訳(メタデータ) (2023-08-24T03:11:45Z) - Hybrid Multi-agent Deep Reinforcement Learning for Autonomous Mobility
on Demand Systems [31.23491481430466]
本稿では,自律型モビリティ・オン・デマンドシステムの利益を最大化する運用者に対して,積極的要求の割当と拒否決定を行うというシーケンシャルな意思決定問題を考察する。
我々はマルコフ決定過程としてこの問題を定式化し、予測制御ポリシを得るために、マルチエージェントのソフトアクター・クリティカルと重み付きバイパートイトマッチングを組み合わせた新しい組み合わせを提案する。
論文 参考訳(メタデータ) (2022-12-14T16:19:51Z) - Integrated Decision and Control for High-Level Automated Vehicles by
Mixed Policy Gradient and Its Experiment Verification [10.393343763237452]
本稿では,IDC(Integrated Decision and Control)に基づく自己進化型意思決定システムを提案する。
制約付き混合ポリシー勾配 (CMPG) と呼ばれるRLアルゴリズムは、IDCの駆動ポリシーを継続的に更新するために提案される。
実験結果から, モデルに基づく手法よりも運転能力の向上が期待できることがわかった。
論文 参考訳(メタデータ) (2022-10-19T14:58:41Z) - Inverse Online Learning: Understanding Non-Stationary and Reactionary
Policies [79.60322329952453]
エージェントが意思決定を行う方法の解釈可能な表現を開発する方法を示す。
一連の軌跡に基づく意思決定プロセスを理解することにより,このオンライン学習問題に対して,政策推論問題を逆問題とみなした。
本稿では、エージェントがそれらを更新するプロセスと並行して、その影響を遡及的に推定する実用的なアルゴリズムを提案する。
UNOSの臓器提供受諾決定の分析に応用することで、我々のアプローチは意思決定プロセスを管理する要因や時間とともにどのように変化するかに、貴重な洞察をもたらすことができることを実証する。
論文 参考訳(メタデータ) (2022-03-14T17:40:42Z) - Parallelized and Randomized Adversarial Imitation Learning for
Safety-Critical Self-Driving Vehicles [11.463476667274051]
運転システムを安全に制御するために、信頼性の高いADAS機能調整を検討することが不可欠である。
本稿では,RAILアルゴリズムを提案する。
提案手法は, LIDARデータを扱う意思決定者を訓練し, 多車線複合高速道路環境における自律走行を制御できる。
論文 参考訳(メタデータ) (2021-12-26T23:42:49Z) - How To Not Drive: Learning Driving Constraints from Demonstration [0.0]
本研究では,人間の運転軌跡から運動計画制約を学習するための新しい手法を提案する。
行動計画は、交通規則に従うために要求される高いレベルの意思決定に責任を負う。
運動プランナーの役割は、自動運転車が従うための実用的で安全な軌道を作り出すことである。
論文 参考訳(メタデータ) (2021-10-01T20:47:04Z) - Reinforcement Learning with Efficient Active Feature Acquisition [59.91808801541007]
実生活では、情報取得は患者の医療検査に該当する可能性がある。
本稿では,アクティブな特徴獲得ポリシーを学習するモデルに基づく強化学習フレームワークを提案する。
この成功の鍵は、部分的に観察された状態から高品質な表現を学ぶ新しい逐次変分自動エンコーダである。
論文 参考訳(メタデータ) (2020-11-02T08:46:27Z) - Decision-making for Autonomous Vehicles on Highway: Deep Reinforcement
Learning with Continuous Action Horizon [14.059728921828938]
本稿では,高速道路における連続水平決定問題に対処するために,深部強化学習(DRL)手法を用いる。
エゴ自動車両の走行目標は、衝突することなく効率的でスムーズなポリシーを実行することである。
PPO-DRLに基づく意思決定戦略は、最適性、学習効率、適応性など、複数の観点から推定される。
論文 参考訳(メタデータ) (2020-08-26T22:49:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。