論文の概要: Seismic horizon detection with neural networks
- arxiv url: http://arxiv.org/abs/2001.03390v1
- Date: Fri, 10 Jan 2020 11:30:50 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 23:30:09.330067
- Title: Seismic horizon detection with neural networks
- Title(参考訳): ニューラルネットワークによる地震地平線検出
- Authors: Alexander Koryagin, Darima Mylzenova, Roman Khudorozhkov, Sergey
Tsimfer
- Abstract要約: 本稿では,複数の実地震立方体上での地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
本研究の主な貢献は,複数実地震立方体における地平線検出にバイナリセグメンテーションを適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
- 参考スコア(独自算出の注目度): 62.997667081978825
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Over the last few years, Convolutional Neural Networks (CNNs) were
successfully adopted in numerous domains to solve various image-related tasks,
ranging from simple classification to fine borders annotation. Tracking seismic
horizons is no different, and there are a lot of papers proposing the usage of
such models to avoid time-consuming hand-picking. Unfortunately, most of them
are (i) either trained on synthetic data, which can't fully represent the
complexity of subterranean structures, (ii) trained and tested on the same
cube, or (iii) lack reproducibility and precise descriptions of the
model-building process. With all that in mind, the main contribution of this
paper is an open-sourced research of applying binary segmentation approach to
the task of horizon detection on multiple real seismic cubes with a focus on
inter-cube generalization of the predictive model.
- Abstract(参考訳): 過去数年間、畳み込みニューラルネットワーク(convolutional neural networks、cnns)は、単純な分類から細かい境界アノテーションまで、様々な画像関連タスクの解決に成功している。
地震の地平線を追尾することも同様であり、時間を要するハンドピッキングを避けるためにそのようなモデルの使用を提案する論文が多数存在する。
残念なことに、そのほとんどは
(i)地下構造の複雑さを完全に表現できない合成データで訓練するか。
(二)同じ立方体で訓練し、試験すること、又は
(iii)モデル構築過程の再現性や正確な説明が欠如している。
本研究の主な貢献は,複数の実地震立方体上での地平線検出にバイナリセグメンテーション手法を適用し,予測モデルのキューブ間一般化に着目したオープンソースの研究である。
関連論文リスト
- CDIMC-net: Cognitive Deep Incomplete Multi-view Clustering Network [53.72046586512026]
我々は,認知的深層不完全多視点クラスタリングネットワーク(CDIMC-net)という,新しい不完全多視点クラスタリングネットワークを提案する。
ビュー固有のディープエンコーダとグラフ埋め込み戦略をフレームワークに組み込むことで、各ビューの高レベルな特徴とローカル構造をキャプチャする。
人間の認知、すなわち、簡単からハードに学ぶことに基づいて、モデルトレーニングのための最も自信あるサンプルを選択するための自己評価戦略を導入する。
論文 参考訳(メタデータ) (2024-03-28T15:45:03Z) - Fundamental limits of community detection from multi-view data:
multi-layer, dynamic and partially labeled block models [7.778975741303385]
現代のネットワーク分析におけるマルチビューデータのコミュニティ検出について検討する。
我々は,データと潜在パラメータ間の相互情報を特徴付ける。
コミュニティ検出のための近似メッセージパッシングに基づく反復アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-16T07:13:32Z) - Denoise and Contrast for Category Agnostic Shape Completion [48.66519783934386]
本稿では,自己スーパービジョンのパワーを利用して3dポイントのクラウド補完を行うディープラーニングモデルを提案する。
Denoising Pretextタスクは、高レベルのセマンティクスから切り離された、必要なローカルキューをネットワークに提供する。
コントラスト学習は、異なる欠落部分を持つ同じ形状の変種間の一致を最大化する。
論文 参考訳(メタデータ) (2021-03-30T20:33:24Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
本論文では,アトリビュートネットワーク上の異常検出のためのコントラスト型自己監視学習フレームワークを提案する。
このフレームワークは、新しいタイプのコントラストインスタンスペアをサンプリングすることで、ネットワークデータからのローカル情報を完全に活用します。
高次元特性と局所構造から情報埋め込みを学習するグラフニューラルネットワークに基づくコントラスト学習モデルを提案する。
論文 参考訳(メタデータ) (2021-02-27T03:17:20Z) - PC-RGNN: Point Cloud Completion and Graph Neural Network for 3D Object
Detection [57.49788100647103]
LiDARベースの3Dオブジェクト検出は、自動運転にとって重要なタスクです。
現在のアプローチでは、遠方および閉ざされた物体の偏りと部分的な点雲に苦しむ。
本稿では,この課題を2つの解決法で解決する新しい二段階アプローチ,pc-rgnnを提案する。
論文 参考訳(メタデータ) (2020-12-18T18:06:43Z) - Quantifying Model Uncertainty in Inverse Problems via Bayesian Deep
Gradient Descent [4.029853654012035]
逆問題における最近の進歩は、例えばディープニューラルネットワークのような強力なデータ駆動モデルを活用する。
ベイズニューラルネットワークによるモデル不確実性を定量化するための,スケーラブルでデータ駆動型,知識支援型計算フレームワークを開発した。
論文 参考訳(メタデータ) (2020-07-20T09:43:31Z) - SeismiQB -- a novel framework for deep learning with seismic data [62.997667081978825]
ニューラルネットワークの開発に重点を置いた、オープンソースのPythonフレームワークを開発しました。
複数のデータフォーマットで地震波キューブを高速にロードする便利なツールを提供する。
また、望まれる形状の作物を生産し、様々な変換で増強する。
論文 参考訳(メタデータ) (2020-01-10T10:45:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。