論文の概要: Semi-supervised Anomaly Detection using AutoEncoders
- arxiv url: http://arxiv.org/abs/2001.03674v1
- Date: Mon, 6 Jan 2020 23:06:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-14 02:02:08.191662
- Title: Semi-supervised Anomaly Detection using AutoEncoders
- Title(参考訳): オートエンコーダを用いた半教師あり異常検出
- Authors: Manpreet Singh Minhas, John Zelek
- Abstract要約: 異常検出(英: Anomaly detection)とは、通常のデータから際立った異常なインスタンスを見つけるタスクである。
本稿では,異常検出のための畳み込み自動エンコーダアーキテクチャを提案する。
このアプローチは2つのデータセットでテストされ、平均F1スコア0.885を達成しました。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Anomaly detection refers to the task of finding unusual instances that stand
out from the normal data. In several applications, these outliers or anomalous
instances are of greater interest compared to the normal ones. Specifically in
the case of industrial optical inspection and infrastructure asset management,
finding these defects (anomalous regions) is of extreme importance.
Traditionally and even today this process has been carried out manually. Humans
rely on the saliency of the defects in comparison to the normal texture to
detect the defects. However, manual inspection is slow, tedious, subjective and
susceptible to human biases. Therefore, the automation of defect detection is
desirable. But for defect detection lack of availability of a large number of
anomalous instances and labelled data is a problem. In this paper, we present a
convolutional auto-encoder architecture for anomaly detection that is trained
only on the defect-free (normal) instances. For the test images, residual masks
that are obtained by subtracting the original image from the auto-encoder
output are thresholded to obtain the defect segmentation masks. The approach
was tested on two data-sets and achieved an impressive average F1 score of
0.885. The network learnt to detect the actual shape of the defects even though
no defected images were used during the training.
- Abstract(参考訳): 異常検出(anomaly detection)は、通常のデータから際立った異常なインスタンスを見つけるタスクである。
いくつかのアプリケーションでは、これらの外れ値や異常なインスタンスは通常のものよりも大きな関心を持つ。
特に工業用光学検査やインフラ資産管理の場合、これらの欠陥(異常領域)を見つけることは極めて重要である。
伝統的にも今日でも手作業で行われている。
人間は欠陥を検出するのに通常のテクスチャに比べて欠陥の正当性に依存する。
しかし、手動検査は遅く、退屈で、主観的で、人間の偏見に影響を受けやすい。
したがって、欠陥検出の自動化が望ましい。
しかし、欠陥検出では、大量の異常インスタンスとラベル付きデータの可用性の欠如が問題となる。
本稿では,異常検出のための畳み込み型オートエンコーダアーキテクチャを提案する。
テスト画像については、オートエンコーダ出力から原画像を減算して得られる残留マスクをしきい値にし、欠陥セグメンテーションマスクを得る。
このアプローチは2つのデータセットでテストされ、平均F1スコア0.885を達成しました。
ネットワークは、トレーニング中に欠陥画像を使用しなくても、欠陥の実際の形状を検出することを学習した。
関連論文リスト
- Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection [88.34095233600719]
FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
論文 参考訳(メタデータ) (2024-10-14T08:41:31Z) - AnomalousPatchCore: Exploring the Use of Anomalous Samples in Industrial Anomaly Detection [2.2742404315918927]
視覚検査(英: visual inspection)または産業異常検出(英: industrial anomaly detection)は、製造業において最も一般的な品質管理タイプの一つである。
ほとんどの異常検出法は、通常のサンプルからのみ知識を利用でき、しばしば利用可能な異常サンプルからの情報を活用することができない。
そこで本研究では,異常検出システムであるAnomalousPatchCore(APC)を提案する。
論文 参考訳(メタデータ) (2024-08-27T14:51:34Z) - Can I trust my anomaly detection system? A case study based on explainable AI [0.4416503115535552]
本稿では,変分自己エンコーダ生成モデルに基づく異常検出システムのロバスト性について検討する。
目標は、再構成の違いを利用する異常検知器の実際の性能について、異なる視点を得ることです。
論文 参考訳(メタデータ) (2024-07-29T12:39:07Z) - GeneralAD: Anomaly Detection Across Domains by Attending to Distorted Features [68.14842693208465]
GeneralADは、意味的、ほぼ分布的、産業的設定で動作するように設計された異常検出フレームワークである。
本稿では,ノイズ付加やシャッフルなどの簡単な操作を施した自己教師付き異常生成モジュールを提案する。
提案手法を10のデータセットに対して広範囲に評価し,6つの実験結果と,残りの6つの実験結果を得た。
論文 参考訳(メタデータ) (2024-07-17T09:27:41Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
具体的には,大規模ビジュアルデータセット上で事前学習されたモデルを利用した初期のマルチモーダルアプローチについて検討する。
本研究では,アダプタを微調整し,異常検出に向けたタスク指向の表現を学習するためのLSFA法を提案する。
論文 参考訳(メタデータ) (2024-01-06T07:30:41Z) - Anomaly Detection in Automated Fibre Placement: Learning with Data
Limitations [3.103778949672542]
自動繊維配置における欠陥検出と局所化のための包括的枠組みを提案する。
我々のアプローチは教師なしのディープラーニングと古典的なコンピュータビジョンアルゴリズムを組み合わせる。
様々な表面の問題を効率よく検出し、訓練のために複合部品のイメージを少なくする。
論文 参考訳(メタデータ) (2023-07-15T22:13:36Z) - Deep Autoencoders for Anomaly Detection in Textured Images using CW-SSIM [5.042611743157464]
複素ウェーブレット構造類似度(CW-SSIM)に基づく損失関数の適用により,この種の画像に対して優れた検出性能が得られることを示す。
既知の異常検出ベンチマーク実験により,この損失関数で訓練した単純なモデルにより,最先端の手法に匹敵する,あるいは優れた性能が得られることが示された。
論文 参考訳(メタデータ) (2022-08-30T08:01:25Z) - SLA$^2$P: Self-supervised Anomaly Detection with Adversarial
Perturbation [77.71161225100927]
異常検出は、機械学習の基本的な問題であるが、難しい問題である。
本稿では,非教師付き異常検出のための新しい強力なフレームワークであるSLA$2$Pを提案する。
論文 参考訳(メタデータ) (2021-11-25T03:53:43Z) - Reference-based Defect Detection Network [57.89399576743665]
最初の問題はテクスチャシフトであり、これはトレーニングされた欠陥検出モデルが目に見えないテクスチャの影響を受けやすいことを意味する。
第2の問題は部分的な視覚的混乱であり、部分的な欠陥ボックスが完全なボックスと視覚的に類似していることを示している。
本稿では,これら2つの問題に対処する参照型欠陥検出ネットワーク(RDDN)を提案する。
論文 参考訳(メタデータ) (2021-08-10T05:44:23Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Few-Shot Defect Segmentation Leveraging Abundant Normal Training Samples
Through Normal Background Regularization and Crop-and-Paste Operation [4.626338154327536]
産業検査作業では, 欠陥のない画像サンプルが豊富だが, 異常な画像が極めて少ないことが一般的である。
本論文は,正常な(欠陥のない)トレーニングイメージを十分に用いながら,異常な部分しか持たない,難解な少数ショット欠陥分割課題に対処する。
UNetライクなエンコーダ-デコーダ欠陥分割ネットワークのトレーニングに、豊富な欠陥のないイメージを組み込むことにより、2つの効果的な正則化手法を提案する。
論文 参考訳(メタデータ) (2020-07-18T14:15:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。