論文の概要: Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection
- arxiv url: http://arxiv.org/abs/2410.10289v1
- Date: Mon, 14 Oct 2024 08:41:31 GMT
- ステータス: 処理完了
- システム内更新日: 2024-10-29 22:34:36.406704
- Title: Fine-grained Abnormality Prompt Learning for Zero-shot Anomaly Detection
- Title(参考訳): ゼロショット異常検出のためのきめ細かい異常学習
- Authors: Jiawen Zhu, Yew-Soon Ong, Chunhua Shen, Guansong Pang,
- Abstract要約: FAPromptは、より正確なZSADのためにきめ細かい異常プロンプトを学習するために設計された新しいフレームワークである。
画像レベルおよび画素レベルのZSADタスクにおいて、最先端の手法を少なくとも3%-5%のAUC/APで大幅に上回っている。
- 参考スコア(独自算出の注目度): 88.34095233600719
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Current zero-shot anomaly detection (ZSAD) methods show remarkable success in prompting large pre-trained vision-language models to detect anomalies in a target dataset without using any dataset-specific training or demonstration. However, these methods are often focused on crafting/learning prompts that capture only coarse-grained semantics of abnormality, e.g., high-level semantics like "damaged", "imperfect", or "defective" on carpet. They therefore have limited capability in recognizing diverse abnormality details with distinctive visual appearance, e.g., specific defect types like color stains, cuts, holes, and threads on carpet. To address this limitation, we propose FAPrompt, a novel framework designed to learn Fine-grained Abnormality Prompts for more accurate ZSAD. To this end, we introduce a novel compound abnormality prompting module in FAPrompt to learn a set of complementary, decomposed abnormality prompts, where each abnormality prompt is formed by a compound of shared normal tokens and a few learnable abnormal tokens. On the other hand, the fine-grained abnormality patterns can be very different from one dataset to another. To enhance their cross-dataset generalization, we further introduce a data-dependent abnormality prior module that learns to derive abnormality features from each query/test image as a sample-wise abnormality prior to ground the abnormality prompts in a given target dataset. Comprehensive experiments conducted across 19 real-world datasets, covering both industrial defects and medical anomalies, demonstrate that FAPrompt substantially outperforms state-of-the-art methods by at least 3%-5% AUC/AP in both image- and pixel-level ZSAD tasks. Code is available at https://github.com/mala-lab/FAPrompt.
- Abstract(参考訳): 現在のゼロショット異常検出(ZSAD)手法は、データセット固有のトレーニングやデモンストレーションを使わずに、大規模な事前訓練された視覚言語モデルにターゲットデータセットの異常を検出することの顕著な成功を示している。
しかしながら、これらの手法は、しばしば、異常の粗い粒度のセマンティクス(例えば、カーペット上の「損傷」、「不完全」、「欠陥」のような高レベルのセマンティクスのみをキャプチャするクラフト/ラーニングプロンプトに焦点が当てられている。
そのため、色染料、カット、穴、カーペット上の糸のような特定の欠陥タイプなど、視覚的な外観の異なる多様な異常を認識できる能力は限られている。
この制限に対処するために、より正確なZSADのためにきめ細かい異常点を学習するための新しいフレームワークであるFAPromptを提案する。
この目的のために,FAPromptの新規な複合異常促進モジュールを導入して,相補的・分解的異常促進剤の集合を学習し,各異常促進剤は共有正規トークンといくつかの学習可能な異常トークンによって形成される。
一方、粒度の細かい異常パターンは、あるデータセットから別のデータセットとは大きく異なる可能性がある。
さらに,各問合せ/テスト画像から異常点を抽出するデータ依存異常先行モジュールを,対象データセットの異常点を起点とするサンプリングワイド異常として導入する。
FAPromptは、画像レベルのZSADタスクとピクセルレベルのZSADタスクの両方で、少なくとも3%-5%のAUC/APで最先端の手法を大幅に上回ることを実証している。
コードはhttps://github.com/mala-lab/FAPrompt.comで入手できる。
関連論文リスト
- Anomaly Detection by Context Contrasting [57.695202846009714]
異常検出は、標準から逸脱するサンプルを特定することに焦点を当てる。
近年の自己教師型学習の進歩は、この点において大きな可能性を秘めている。
我々はコンテキスト拡張を通じて学習するCon$を提案する。
論文 参考訳(メタデータ) (2024-05-29T07:59:06Z) - ARC: A Generalist Graph Anomaly Detector with In-Context Learning [62.202323209244]
ARCは汎用的なGADアプローチであり、一対一のGADモデルで様々なグラフデータセットの異常を検出することができる。
ARCはコンテキスト内学習を備えており、ターゲットデータセットからデータセット固有のパターンを直接抽出することができる。
各種領域からの複数のベンチマークデータセットに対する大規模な実験は、ARCの優れた異常検出性能、効率、一般化性を示す。
論文 参考訳(メタデータ) (2024-05-27T02:42:33Z) - Toward Generalist Anomaly Detection via In-context Residual Learning with Few-shot Sample Prompts [25.629973843455495]
Generalist Anomaly Detection (GAD)は、ターゲットデータにさらなるトレーニングを加えることなく、さまざまなアプリケーションドメインからさまざまなデータセットの異常を検出するために一般化可能な、単一の検出モデルをトレーニングすることを目的としている。
InCTRLと呼ばれるGADのための文脈内残差学習モデルを学習する新しい手法を提案する。
InCTRLは最高のパフォーマーであり、最先端の競合手法を著しく上回っている。
論文 参考訳(メタデータ) (2024-03-11T08:07:46Z) - Video Anomaly Detection via Spatio-Temporal Pseudo-Anomaly Generation : A Unified Approach [49.995833831087175]
本研究は,画像のマスキング領域にペンキを塗布することにより,汎用的な映像時間PAを生成する手法を提案する。
さらに,OCC設定下での現実世界の異常を検出するための単純な統合フレームワークを提案する。
提案手法は,OCC設定下での既存のPAs生成および再構築手法と同等に動作する。
論文 参考訳(メタデータ) (2023-11-27T13:14:06Z) - Open-Vocabulary Video Anomaly Detection [57.552523669351636]
監視の弱いビデオ異常検出(VAD)は、ビデオフレームが正常であるか異常であるかを識別するためにビデオレベルラベルを利用する際、顕著な性能を達成した。
近年の研究は、より現実的な、オープンセットのVADに取り組み、異常や正常なビデオから見えない異常を検出することを目的としている。
本稿ではさらに一歩前進し、未確認および未確認の異常を検知・分類するために訓練済みの大規模モデルを活用することを目的とした、オープン語彙ビデオ異常検出(OVVAD)について検討する。
論文 参考訳(メタデータ) (2023-11-13T02:54:17Z) - AnomalyCLIP: Object-agnostic Prompt Learning for Zero-shot Anomaly Detection [30.679012320439625]
AnomalyCLIPはオブジェクトに依存しないテキストを学習し、画像の一般的な正規性と異常をキャプチャする。
非常に多様なクラスセマンティクスのデータセットにおける異常の検出とセグメンテーションにおいて、優れたゼロショット性能を実現する。
論文 参考訳(メタデータ) (2023-10-29T10:03:49Z) - Few-shot Deep Representation Learning based on Information Bottleneck
Principle [0.0]
標準異常検出問題では、サンプルが正規データの単一ソースから生成されたと仮定して、教師なしの設定で検出モデルを訓練する。
実際には、通常データは複数のクラスから構成されることが多いが、このような設定では、大規模ラベル付きデータを持たない通常のクラス間の相違点において、通常のインスタンスと異常を区別する学習が大きな課題となっている。
本研究では,通常のクラスからサンプルを少数用意することで,この課題を克服しようと試みるが,これは過度にコストがかかるものではない。
論文 参考訳(メタデータ) (2021-11-25T07:15:12Z) - Explainable Deep Few-shot Anomaly Detection with Deviation Networks [123.46611927225963]
本稿では,弱い教師付き異常検出フレームワークを導入し,検出モデルを訓練する。
提案手法は,ラベル付き異常と事前確率を活用することにより,識別正規性を学習する。
我々のモデルはサンプル効率が高く頑健であり、クローズドセットとオープンセットの両方の設定において最先端の競合手法よりもはるかに優れている。
論文 参考訳(メタデータ) (2021-08-01T14:33:17Z) - Constrained Contrastive Distribution Learning for Unsupervised Anomaly
Detection and Localisation in Medical Images [23.79184121052212]
UAD(Unsupervised Anomaly Detection)は、通常の(すなわち健康的な)画像でのみ1クラスの分類器を学習する。
異常検出のための制約コントラスト分布学習(Constrained Contrastive Distribution Learning for Anomaly Detection, CCD)を提案する。
本手法は,3種類の大腸内視鏡および底部検診データセットにおいて,最先端のUADアプローチよりも優れている。
論文 参考訳(メタデータ) (2021-03-05T01:56:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。