論文の概要: Learning Topometric Semantic Maps from Occupancy Grids
- arxiv url: http://arxiv.org/abs/2001.03676v1
- Date: Fri, 10 Jan 2020 22:06:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-12 23:42:03.518746
- Title: Learning Topometric Semantic Maps from Occupancy Grids
- Title(参考訳): 作業グリッドからのトポロジカルセマンティックマップの学習
- Authors: Markus Hiller, Chen Qiu, Florian Particke, Christian Hofmann and
J\"orn Thielecke
- Abstract要約: 本稿では,このようなインスタンスベースのセマンティックマップを,占有グリッドから純粋に抽出する手法を提案する。
我々は、ランダムな大きさの地図からドア仮説を検出し、セグメンテーションし、抽出するために、深層学習技術を組み合わせている。
提案手法を,公開されている実世界の複数のデータセットに対して評価する。
- 参考スコア(独自算出の注目度): 2.5234065536725963
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Today's mobile robots are expected to operate in complex environments they
share with humans. To allow intuitive human-robot collaboration, robots require
a human-like understanding of their surroundings in terms of semantically
classified instances. In this paper, we propose a new approach for deriving
such instance-based semantic maps purely from occupancy grids. We employ a
combination of deep learning techniques to detect, segment and extract door
hypotheses from a random-sized map. The extraction is followed by a
post-processing chain to further increase the accuracy of our approach, as well
as place categorization for the three classes room, door and corridor. All
detected and classified entities are described as instances specified in a
common coordinate system, while a topological map is derived to capture their
spatial links. To train our two neural networks used for detection and map
segmentation, we contribute a simulator that automatically creates and
annotates the required training data. We further provide insight into which
features are learned to detect doorways, and how the simulated training data
can be augmented to train networks for the direct application on real-world
grid maps. We evaluate our approach on several publicly available real-world
data sets. Even though the used networks are solely trained on simulated data,
our approach demonstrates high robustness and effectiveness in various
real-world indoor environments.
- Abstract(参考訳): 今日の移動ロボットは、人間と共有する複雑な環境で動作することが期待されている。
人間とロボットの直感的なコラボレーションを可能にするために、ロボットは意味的に分類されたインスタンスの観点から、人間のような環境を理解する必要がある。
本稿では,このようなインスタンスベースの意味マップを占有グリッドから純粋に導出する新しい手法を提案する。
我々は、ランダムな大きさの地図からドア仮説を検出し、セグメンテーションし、抽出するために、深層学習技術を組み合わせている。
抽出は後処理チェーンで行い,アプローチの精度をさらに高めるとともに,3つのクラスルーム,ドア,廊下の配置分類を行う。
全ての検出および分類された実体は共通座標系で特定されたインスタンスとして記述され、トポロジカルマップはそれらの空間リンクをキャプチャするために導かれる。
検出とマップセグメンテーションに使用される2つのニューラルネットワークをトレーニングするために、必要なトレーニングデータを自動生成して注釈付けするシミュレータをコントリビュートする。
さらに、ドアウェイを検出するためにどの機能が学習されているか、シミュレーションされたトレーニングデータを現実世界のグリッドマップに直接適用するためのトレーニングネットワークにどのように拡張できるか、といった知見を提供する。
提案手法を,公開されている実世界の複数のデータセットに対して評価する。
使用済みネットワークはシミュレーションデータにのみ訓練されているが,本手法は実世界の屋内環境において高い堅牢性と有効性を示す。
関連論文リスト
- Mapping High-level Semantic Regions in Indoor Environments without
Object Recognition [50.624970503498226]
本研究では,屋内環境における埋め込みナビゲーションによる意味領域マッピング手法を提案する。
地域識別を実現するために,視覚言語モデルを用いて地図作成のためのシーン情報を提供する。
グローバルなフレームにエゴセントリックなシーン理解を投影することにより、提案手法は各場所の可能な領域ラベル上の分布としてのセマンティックマップを生成する。
論文 参考訳(メタデータ) (2024-03-11T18:09:50Z) - ALSO: Automotive Lidar Self-supervision by Occupancy estimation [70.70557577874155]
本稿では,ポイントクラウド上で動作している深層知覚モデルのバックボーンを事前学習するための自己教師型手法を提案する。
中心となる考え方は、3Dポイントがサンプリングされる表面の再構成であるプリテキストタスクでモデルをトレーニングすることである。
直感的には、もしネットワークがわずかな入力ポイントのみを考慮し、シーン表面を再構築できるなら、おそらく意味情報の断片をキャプチャする。
論文 参考訳(メタデータ) (2022-12-12T13:10:19Z) - Navigating to Objects in the Real World [76.1517654037993]
本稿では,古典的,モジュール的,エンド・ツー・エンドの学習手法と比較した,意味的視覚ナビゲーション手法に関する大規模な実証的研究について述べる。
モジュラー学習は実世界ではうまく機能し、90%の成功率に達しています。
対照的に、エンド・ツー・エンドの学習は、シミュレーションと現実の間の画像領域の差が大きいため、77%のシミュレーションから23%の実際の成功率へと低下する。
論文 参考訳(メタデータ) (2022-12-02T01:10:47Z) - Multi-Object Navigation with dynamically learned neural implicit
representations [10.182418917501064]
本稿では,各エピソードにおいて動的に学習される2つのニューラル暗示表現を用いてニューラルネットワークを構築することを提案する。
マルチオブジェクトナビゲーションにおけるエージェントの評価を行い、暗黙的表現をメモリソースとして使用する場合の影響を高く示す。
論文 参考訳(メタデータ) (2022-10-11T04:06:34Z) - Towards Optimal Strategies for Training Self-Driving Perception Models
in Simulation [98.51313127382937]
合成ドメインのみにおけるラベルの使用に焦点を当てる。
提案手法では,ニューラル不変表現の学習方法と,シミュレータからデータをサンプリングする方法に関する理論的にインスピレーションを得た視点を導入する。
マルチセンサーデータを用いた鳥眼視車両分割作業におけるアプローチについて紹介する。
論文 参考訳(メタデータ) (2021-11-15T18:37:43Z) - Efficient Placard Discovery for Semantic Mapping During Frontier
Exploration [0.0]
この研究は、Interruptable Frontier Explorationアルゴリズムを導入し、ロボットが自身の環境を探索してSLAMマップを構築すると同時に、このプロセス中に観察されたプラカードを検査することを可能にする。
これにより、ロボットは人間の介入なしに部屋のプラカードを自律的に発見できる。
論文 参考訳(メタデータ) (2021-10-27T20:00:07Z) - Solving Occlusion in Terrain Mapping with Neural Networks [7.703348666813963]
本研究では,実世界のデータに基づいて,地上情報を必要としない自己教師付き学習手法を提案する。
私たちのニューラルネットワークは、自律的な地上ロボットに適したサンプリングレートで、CPUとGPUの両方でリアルタイムで実行できます。
論文 参考訳(メタデータ) (2021-09-15T08:30:16Z) - Self-supervised Audiovisual Representation Learning for Remote Sensing Data [96.23611272637943]
遠隔センシングにおける深層ニューラルネットワークの事前学習のための自己教師型アプローチを提案する。
ジオタグ付きオーディオ記録とリモートセンシングの対応を利用して、これは完全にラベルなしの方法で行われる。
提案手法は,既存のリモートセンシング画像の事前学習方法よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-08-02T07:50:50Z) - Where2Act: From Pixels to Actions for Articulated 3D Objects [54.19638599501286]
可動部を有する関節物体の押出しや引抜き等の基本動作に関連する高度に局所化された動作可能な情報を抽出する。
シミュレーションでネットワークをトレーニングできるオンラインデータサンプリング戦略を備えた学習から対話までのフレームワークを提案します。
私たちの学習モデルは、現実世界のデータにも転送します。
論文 参考訳(メタデータ) (2021-01-07T18:56:38Z) - Trajectory annotation using sequences of spatial perception [0.0]
近い将来、より多くのマシンが人間の空間の近くでタスクを実行するようになる。
この作業は、この課題に対処するための基盤を構築します。
本稿では,ニューラルオートエンコーディングに基づく教師なし学習手法を提案する。
論文 参考訳(メタデータ) (2020-04-11T12:22:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。