論文の概要: Trajectory annotation using sequences of spatial perception
- arxiv url: http://arxiv.org/abs/2004.05383v1
- Date: Sat, 11 Apr 2020 12:22:27 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-14 09:58:55.275535
- Title: Trajectory annotation using sequences of spatial perception
- Title(参考訳): 空間知覚のシーケンスを用いた軌道アノテーション
- Authors: Sebastian Feld (1), Steffen Illium (1), Andreas Sedlmeier (1), Lenz
Belzner (2) ((1) Mobile and Distributed Systems Group LMU Munich, (2)
MaibornWolff Munich)
- Abstract要約: 近い将来、より多くのマシンが人間の空間の近くでタスクを実行するようになる。
この作業は、この課題に対処するための基盤を構築します。
本稿では,ニューラルオートエンコーディングに基づく教師なし学習手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the near future, more and more machines will perform tasks in the vicinity
of human spaces or support them directly in their spatially bound activities.
In order to simplify the verbal communication and the interaction between
robotic units and/or humans, reliable and robust systems w.r.t. noise and
processing results are needed. This work builds a foundation to address this
task. By using a continuous representation of spatial perception in interiors
learned from trajectory data, our approach clusters movement in dependency to
its spatial context. We propose an unsupervised learning approach based on a
neural autoencoding that learns semantically meaningful continuous encodings of
spatio-temporal trajectory data. This learned encoding can be used to form
prototypical representations. We present promising results that clear the path
for future applications.
- Abstract(参考訳): 近い将来、より多くのマシンが人間の空間の近くでタスクを実行したり、空間的に拘束された活動で直接支援したりできるようになる。
言語コミュニケーションとロボットユニットと/または人間とのインタラクションを単純化するために、信頼できるロバストなシステム w.r.t. ノイズおよび処理結果が必要である。
この作業は、このタスクに対処するための基盤を構築します。
軌道データから学習した内部空間知覚の連続的表現を用いて、我々のアプローチクラスタは、その空間的文脈に依存する。
時空間軌跡データの意味的に意味のある連続的な符号化を学習するニューラルオートエンコーディングに基づく教師なし学習手法を提案する。
この学習された符号化は、原型表現を形成するために使用できる。
今後の応用への道を切り開く有望な結果を提示する。
関連論文リスト
- Social-Transmotion: Promptable Human Trajectory Prediction [65.80068316170613]
Social-Transmotionは、多種多様な視覚的手がかりを利用して人間の行動を予測する、汎用トランスフォーマーベースのモデルである。
提案手法は,JTA,JRDB,歩行者,道路交通のサイクリスト,ETH-UCYなど,複数のデータセットで検証されている。
論文 参考訳(メタデータ) (2023-12-26T18:56:49Z) - Visual Affordance Prediction for Guiding Robot Exploration [56.17795036091848]
我々は,ロボット探索を導くための視覚能力の学習手法を開発した。
VQ-VAEの潜伏埋め込み空間における条件分布の学習にはTransformerベースのモデルを用いる。
本稿では,ロボット操作における視覚的目標条件付きポリシー学習において,目標サンプリング分布として機能することで探索を導くために,トレーニングされた余裕モデルをどのように利用できるかを示す。
論文 参考訳(メタデータ) (2023-05-28T17:53:09Z) - Stochastic Coherence Over Attention Trajectory For Continuous Learning
In Video Streams [64.82800502603138]
本稿では,映像ストリーム中のピクセルワイズ表現を段階的かつ自律的に開発するための,ニューラルネットワークに基づく新しいアプローチを提案する。
提案手法は, 参加者の入場地を観察することで, エージェントが学習できる, 人間の様の注意機構に基づく。
実験では,3次元仮想環境を利用して,映像ストリームを観察することで,エージェントが物体の識別を学べることを示す。
論文 参考訳(メタデータ) (2022-04-26T09:52:31Z) - Geography-Aware Self-Supervised Learning [79.4009241781968]
異なる特徴により、標準ベンチマークにおけるコントラスト学習と教師あり学習の間には、非自明なギャップが持続していることが示される。
本稿では,リモートセンシングデータの空間的整合性を利用した新しいトレーニング手法を提案する。
提案手法は,画像分類,オブジェクト検出,セマンティックセグメンテーションにおけるコントラスト学習と教師あり学習のギャップを埋めるものである。
論文 参考訳(メタデータ) (2020-11-19T17:29:13Z) - Exploring Dynamic Context for Multi-path Trajectory Prediction [33.66335553588001]
動的コンテキストネットワーク(DCENet)という新しいフレームワークを提案する。
本フレームワークでは,エージェント間の空間的コンテキストを自己注意型アーキテクチャを用いて探索する。
学習した空間的時間的文脈に基づいて、各エージェントに対する将来の軌跡のセットを条件付きで予測する。
論文 参考訳(メタデータ) (2020-10-30T13:39:20Z) - Learning Invariant Representations for Reinforcement Learning without
Reconstruction [98.33235415273562]
本研究では,表現学習が画像などのリッチな観察からの強化学習を,ドメイン知識や画素再構成に頼ることなく促進する方法について検討する。
シミュレーションメトリクスは、連続MDPの状態間の振る舞いの類似性を定量化する。
修正された視覚的 MuJoCo タスクを用いてタスク関連情報を無視する手法の有効性を実証する。
論文 参考訳(メタデータ) (2020-06-18T17:59:35Z) - Auxiliary-task learning for geographic data with autoregressive
embeddings [1.4823143667165382]
本研究では,空間データの自己回帰性に関する情報を学習プロセスに直接埋め込む手法であるSXLを提案する。
局所空間自己相関の一般的な尺度である局所モランIを用いて、局所空間効果の方向と大きさを学習する。
我々は,教師なしおよび教師なしの学習タスクにおいて,ニューラルネットワークのトレーニングを継続的に改善する方法について強調する。
論文 参考訳(メタデータ) (2020-06-18T12:16:08Z) - Robust and Interpretable Grounding of Spatial References with Relation
Networks [40.42540299023808]
自然言語による空間参照の表現を学習することは、自律的なナビゲーションやロボット操作といったタスクにおいて重要な課題である。
近年,空間概念のマルチモーダル表現を学習するための様々なニューラルアーキテクチャが研究されている。
我々は、頑健で解釈可能なテキストにおける空間参照を理解するための効果的なモデルを開発する。
論文 参考訳(メタデータ) (2020-05-02T04:11:33Z) - A Spatial-Temporal Attentive Network with Spatial Continuity for
Trajectory Prediction [74.00750936752418]
空間連続性をもつ空間時間減衰ネットワーク(STAN-SC)という新しいモデルを提案する。
まず、最も有用かつ重要な情報を探るために、空間的時間的注意機構を提示する。
第2に、生成軌道の空間的連続性を維持するために、シーケンスと瞬間状態情報に基づく共同特徴系列を実行する。
論文 参考訳(メタデータ) (2020-03-13T04:35:50Z) - Learning Object Placements For Relational Instructions by Hallucinating
Scene Representations [26.897316325189205]
単一入力画像から空間関係の集合に対する画素単位の物体配置確率を推定するための畳み込みニューラルネットワークを提案する。
本手法では,オブジェクトの画素関係確率や3次元モデルに対して,地上の真理データを必要としない。
実世界のデータと人間ロボット実験を用いて,本手法の有効性を実証した。
論文 参考訳(メタデータ) (2020-01-23T12:58:50Z) - Learning Topometric Semantic Maps from Occupancy Grids [2.5234065536725963]
本稿では,このようなインスタンスベースのセマンティックマップを,占有グリッドから純粋に抽出する手法を提案する。
我々は、ランダムな大きさの地図からドア仮説を検出し、セグメンテーションし、抽出するために、深層学習技術を組み合わせている。
提案手法を,公開されている実世界の複数のデータセットに対して評価する。
論文 参考訳(メタデータ) (2020-01-10T22:06:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。