論文の概要: Learning to Locomote with Deep Neural-Network and CPG-based Control in a
Soft Snake Robot
- arxiv url: http://arxiv.org/abs/2001.04059v2
- Date: Mon, 2 Mar 2020 20:45:19 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 23:16:26.094190
- Title: Learning to Locomote with Deep Neural-Network and CPG-based Control in a
Soft Snake Robot
- Title(参考訳): ソフトスネークロボットにおけるディープニューラルネットワークとcpg制御によるロコモト学習
- Authors: Xuan Liu, Renato Gasoto, Cagdas Onal, Jie Fu
- Abstract要約: 生体ヘビに触発されたソフトロボットヘビの新しい移動制御法を提案する。
提案した制御器の性能は,シミュレーションロボットと実ソフトヘビロボットの両方を用いて実験的に検証した。
- 参考スコア(独自算出の注目度): 19.80726424244039
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we present a new locomotion control method for soft robot
snakes. Inspired by biological snakes, our control architecture is composed of
two key modules: A deep reinforcement learning (RL) module for achieving
adaptive goal-tracking behaviors with changing goals, and a central pattern
generator (CPG) system with Matsuoka oscillators for generating stable and
diverse locomotion patterns. The two modules are interconnected into a
closed-loop system: The RL module, analogizing the locomotion region located in
the midbrain of vertebrate animals, regulates the input to the CPG system given
state feedback from the robot. The output of the CPG system is then translated
into pressure inputs to pneumatic actuators of the soft snake robot. Based on
the fact that the oscillation frequency and wave amplitude of the Matsuoka
oscillator can be independently controlled under different time scales, we
further adapt the option-critic framework to improve the learning performance
measured by optimality and data efficiency. The performance of the proposed
controller is experimentally validated with both simulated and real soft snake
robots.
- Abstract(参考訳): 本稿では,ソフトロボットヘビの新しい移動制御法を提案する。
生物ヘビにインスパイアされた制御アーキテクチャは, 目標変化を伴う適応目標追跡動作を実現するための深層強化学習(RL)モジュールと, 安定かつ多様な移動パターンを生成するための松岡発振器を用いた中央パターン生成(CPG)システムとから構成される。
rlモジュールは脊椎動物の中脳に位置する運動領域を類似させ、ロボットからの状態フィードバックを受けてcpgシステムへの入力を制御している。
その後、cpgシステムの出力は、ソフトスネークロボットの空気圧アクチュエータへの圧力入力に変換される。
松岡発振器の発振周波数と波振幅を異なる時間スケールで独立に制御できることから,最適性とデータ効率で測定した学習性能を向上させるために,オプション批判の枠組みをさらに適応させる。
提案する制御器の性能はシミュレーションと実際のソフトスネークロボットの両方で実験的に検証される。
関連論文リスト
- Function Approximation for Reinforcement Learning Controller for Energy from Spread Waves [69.9104427437916]
マルチジェネレータ・ウェーブ・エナジー・コンバータ(WEC)は、スプレッド・ウェーブと呼ばれる異なる方向から来る複数の同時波を処理しなければならない。
これらの複雑な装置は、エネルギー捕獲効率、維持を制限する構造的ストレスの低減、高波に対する積極的な保護という複数の目的を持つコントローラを必要とする。
本稿では,システム力学のシーケンシャルな性質をモデル化する上で,ポリシーと批判ネットワークの異なる機能近似について検討する。
論文 参考訳(メタデータ) (2024-04-17T02:04:10Z) - Reinforcement Learning for Versatile, Dynamic, and Robust Bipedal Locomotion Control [106.32794844077534]
本稿では,二足歩行ロボットのための動的移動制御系を構築するために,深層強化学習を用いた研究について述べる。
本研究では、周期歩行やランニングから周期ジャンプや立位に至るまで、様々な動的二足歩行技術に使用できる汎用的な制御ソリューションを開発する。
この研究は、二足歩行ロボットの俊敏性の限界を、現実世界での広範な実験を通じて押し上げる。
論文 参考訳(メタデータ) (2024-01-30T10:48:43Z) - Combining model-predictive control and predictive reinforcement learning
for stable quadrupedal robot locomotion [0.0]
モデル予測型と予測型強化型学習コントローラの組み合わせによりこれを実現できるかを検討する。
本研究では,両制御手法を組み合わせて,四足歩行ロボットの安定ゲート生成問題に対処する。
論文 参考訳(メタデータ) (2023-07-15T09:22:37Z) - DeepCPG Policies for Robot Locomotion [1.0057838324294686]
より大きなニューラルネットワークのレイヤとしてCPGを組み込む新しいDeepCPGポリシー。
従来のアプローチと比較して、DeepCPGポリシーは効果的な移動戦略のサンプル効率のよいエンドツーエンド学習を可能にする。
以上の結果から,ロボットプラットフォーム上での非自明なセンサとモータの統合が実現できることが示唆された。
論文 参考訳(メタデータ) (2023-02-25T23:16:57Z) - Bayesian Optimization Meets Hybrid Zero Dynamics: Safe Parameter
Learning for Bipedal Locomotion Control [17.37169551675587]
両足歩行ロボットの移動制御のためのマルチドメイン制御パラメータ学習フレームワークを提案する。
BOを利用して、HZDベースのコントローラで使用される制御パラメータを学習する。
次に、物理ロボットに学習プロセスを適用し、シミュレーションで学習した制御パラメータの修正を学習する。
論文 参考訳(メタデータ) (2022-03-04T20:48:17Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Neuromorphic adaptive spiking CPG towards bio-inspired locomotion of
legged robots [58.720142291102135]
スパイクセントラルパターンジェネレーターは、外部刺激によって駆動される異なる移動パターンを生成します。
終端ロボットプラットフォーム(あらゆる脚ロボット)の移動は、任意のセンサーを入力として地形に適応することができる。
論文 参考訳(メタデータ) (2021-01-24T12:44:38Z) - A Spiking Central Pattern Generator for the control of a simulated
lamprey robot running on SpiNNaker and Loihi neuromorphic boards [1.8139771201780368]
本稿では,シミュレートされたランプレーモデルを制御する手段として,スパイクニューラルネットワークとニューロモルフィックハードウェアの実装を提案する。
センサ情報によって提供できるネットワークへの入力を変更することで,ロボットの方向や速度を動的に制御できることを示す。
スパイキングアルゴリズムのこのカテゴリは、エネルギー効率と計算速度の観点から、ニューロモルフィックハードウェアの理論的利点を利用する有望な可能性を示している。
論文 参考訳(メタデータ) (2021-01-18T11:04:16Z) - Learning a Contact-Adaptive Controller for Robust, Efficient Legged
Locomotion [95.1825179206694]
四足歩行ロボットのためのロバストコントローラを合成するフレームワークを提案する。
高レベルコントローラは、環境の変化に応じてプリミティブのセットを選択することを学習する。
確立された制御方法を使用してプリミティブを堅牢に実行する低レベルコントローラ。
論文 参考訳(メタデータ) (2020-09-21T16:49:26Z) - Populations of Spiking Neurons for Reservoir Computing: Closed Loop
Control of a Compliant Quadruped [64.64924554743982]
本稿では,ニューラルネットワークを用いた中央パターン生成機構を実装し,閉ループロボット制御を実現するためのフレームワークを提案する。
本研究では,従順な四足歩行ロボットのシミュレーションモデル上で,予め定義された歩行パターン,速度制御,歩行遷移の学習を実演する。
論文 参考訳(メタデータ) (2020-04-09T14:32:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。