論文の概要: A Deep Inverse-Mapping Model for a Flapping Robotic Wing
- arxiv url: http://arxiv.org/abs/2502.09378v1
- Date: Thu, 13 Feb 2025 14:46:04 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-02-14 13:44:52.926642
- Title: A Deep Inverse-Mapping Model for a Flapping Robotic Wing
- Title(参考訳): 羽ばたきロボット翼の深部逆マッピングモデル
- Authors: Hadar Sharvit, Raz Karl, Tsevi Beatus,
- Abstract要約: システム制御では、システムのダイナミクスは入力によって制御され、望ましい結果が得られる。
羽ばたきロボットでは、複雑な流体運動が関与し、入力(翼運動学)を結果(空気力)にマッピングするのは簡単ではない。
本稿では,実験システムから得られたデータに基づくフラッピング翼系の逆マッピングのための機械学習ソリューションについて報告する。
- 参考スコア(独自算出の注目度): 0.0
- License:
- Abstract: In systems control, the dynamics of a system are governed by modulating its inputs to achieve a desired outcome. For example, to control the thrust of a quad-copter propeller the controller modulates its rotation rate, relying on a straightforward mapping between the input rotation rate and the resulting thrust. This mapping can be inverted to determine the rotation rate needed to generate a desired thrust. However, in complex systems, such as flapping-wing robots where intricate fluid motions are involved, mapping inputs (wing kinematics) to outcomes (aerodynamic forces) is nontrivial and inverting this mapping for real-time control is computationally impractical. Here, we report a machine-learning solution for the inverse mapping of a flapping-wing system based on data from an experimental system we have developed. Our model learns the input wing motion required to generate a desired aerodynamic force outcome. We used a sequence-to-sequence model tailored for time-series data and augmented it with a novel adaptive-spectrum layer that implements representation learning in the frequency domain. To train our model, we developed a flapping wing system that simultaneously measures the wing's aerodynamic force and its 3D motion using high-speed cameras. We demonstrate the performance of our system on an additional open-source dataset of a flapping wing in a different flow regime. Results show superior performance compared with more complex state-of-the-art transformer-based models, with 11% improvement on the test datasets median loss. Moreover, our model shows superior inference time, making it practical for onboard robotic control. Our open-source data and framework may improve modeling and real-time control of systems governed by complex dynamics, from biomimetic robots to biomedical devices.
- Abstract(参考訳): システム制御において、システムの力学は、その入力を変調して望ましい結果を達成することによって制御される。
例えば、クアッドコプタープロペラの推力を制御するために、コントローラは入力の回転率と結果の推力との直接的なマッピングに依存して回転率を変調する。
この写像は反転して所望の推力を生成するのに必要な回転率を決定することができる。
しかし、複雑な流体運動が関与する羽ばたき翼ロボットのような複雑なシステムでは、入力(翼運動学)を結果(空気力)にマッピングするのは簡単ではなく、リアルタイム制御のためにこのマッピングを反転させることは非現実的である。
本稿では,実験システムから得られたデータに基づくフラッピング翼系の逆マッピングのための機械学習ソリューションについて報告する。
本モデルでは, 所望の空気力結果を生成するために必要な入力翼運動を学習する。
時系列データに適したシーケンス・ツー・シーケンス・モデルを用いて、周波数領域における表現学習を実装した新しい適応スペクトル層で拡張した。
本研究では,高速カメラを用いて翼の空気力と3次元運動を同時に測定する羽ばたき翼システムを開発した。
本研究では,異なるフロー状態における羽ばたき翼のオープンソースデータセット上で,本システムの性能を実証する。
その結果、より複雑な最先端のトランスフォーマーベースモデルと比較して優れた性能を示し、テストデータセットの中央値損失は11%改善した。
さらに,本モデルでは推論時間も優れており,ロボット制御の実用化が期待できる。
我々のオープンソースのデータとフレームワークは、生体模倣ロボットから生体医療機器まで、複雑な力学によって制御されるシステムのモデリングとリアルタイム制御を改善することができる。
関連論文リスト
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
KFD-NeRFは,Kalmanフィルタに基づく効率的かつ高品質な運動再構成フレームワークと統合された,新しい動的ニューラル放射場である。
我々のキーとなる考え方は、動的放射場を、観測と予測という2つの知識源に基づいて時間的に異なる状態が推定される動的システムとしてモデル化することである。
我々のKFD-NeRFは、同等の計算時間と最先端の視線合成性能で、徹底的な訓練を施した類似または優れた性能を示す。
論文 参考訳(メタデータ) (2024-07-18T05:48:24Z) - Gaussian Splatting to Real World Flight Navigation Transfer with Liquid Networks [93.38375271826202]
本研究では,シミュレート・トゥ・リアルな視覚四重項ナビゲーションタスクにおける分布シフトに対する一般化とロバスト性を改善する手法を提案する。
まず,擬似飛行力学とガウススプラッティングを統合してシミュレータを構築し,その後,液状ニューラルネットワークを用いてロバストなナビゲーションポリシーを訓練する。
このようにして、我々は3次元ガウススプラッティングラディアンス場レンダリング、専門家による実演訓練データのプログラミング、およびLiquid Networkのタスク理解能力の進歩を組み合わせたフルスタックの模倣学習プロトコルを得る。
論文 参考訳(メタデータ) (2024-06-21T13:48:37Z) - Inverted Landing in a Small Aerial Robot via Deep Reinforcement Learning
for Triggering and Control of Rotational Maneuvers [11.29285364660789]
高速で頑健な逆着陸は、特に機内でのセンシングと計算に完全に依存しながらも、空中ロボットにとって難しい偉業である。
これまでの研究では、一連の視覚的手がかりとキネマティックな動作の間に直接的な因果関係が特定され、小型の空中ロボットでこの困難なエアロバティックな操作を確実に実行することができた。
本研究では、まずDeep Reinforcement Learningと物理シミュレーションを用いて、頑健な逆着陸のための汎用的最適制御ポリシーを得る。
論文 参考訳(メタデータ) (2022-09-22T14:38:10Z) - Data-Driven Machine Learning Models for a Multi-Objective Flapping Fin
Unmanned Underwater Vehicle Control System [0.5522489572615558]
我々は,キネマティクスからスラストへのニューラルネットワークモデルを利用した検索に基づく逆モデルを構築し,制御系の設計を行う。
この逆モデルを統合した制御系が、オンラインのサイクル・ツー・サイクルの調整を行い、異なるシステムの目的を優先順位付けする方法を実証する。
論文 参考訳(メタデータ) (2022-09-14T01:55:15Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
我々は,動的・シミュレータモデルと実ロボット間の残差を学習する。
学習した残差誤差により、動的モデル、シミュレーション、および実際のハードウェア間の現実的ギャップをさらに埋めることができることを示す。
論文 参考訳(メタデータ) (2022-09-07T15:15:12Z) - Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate
Model Predictive Trajectory Tracking [76.27433308688592]
クオーロタのシステムダイナミクスを正確にモデル化することは、アジャイル、安全、安定したナビゲーションを保証する上で非常に重要です。
本稿では,ロボットの経験から,四重項系の力学を純粋に学習するための新しい物理インスパイアされた時間畳み込みネットワーク(PI-TCN)を提案する。
提案手法は,スパース時間的畳み込みと高密度フィードフォワード接続の表現力を組み合わせて,正確なシステム予測を行う。
論文 参考訳(メタデータ) (2022-06-07T13:51:35Z) - End-to-End Learning of Hybrid Inverse Dynamics Models for Precise and
Compliant Impedance Control [16.88250694156719]
剛体力学モデルの物理的に一貫した慣性パラメータを同定できる新しいハイブリッドモデルの定式化を提案する。
7自由度マニピュレータ上での最先端の逆動力学モデルに対する我々のアプローチを比較した。
論文 参考訳(メタデータ) (2022-05-27T07:39:28Z) - Visual-tactile sensing for Real-time liquid Volume Estimation in
Grasping [58.50342759993186]
変形性容器内の液体をリアルタイムに推定するためのビジュオ触覚モデルを提案する。
我々は、RGBカメラからの生の視覚入力と、特定の触覚センサーからの触覚手がかりの2つの感覚モードを融合する。
ロボットシステムは、推定モデルに基づいて、リアルタイムで適切に制御され、調整される。
論文 参考訳(メタデータ) (2022-02-23T13:38:31Z) - OSCAR: Data-Driven Operational Space Control for Adaptive and Robust
Robot Manipulation [50.59541802645156]
オペレーショナル・スペース・コントロール(OSC)は、操作のための効果的なタスクスペース・コントローラとして使われてきた。
本稿では,データ駆動型OSCのモデル誤差を補償するOSC for Adaptation and Robustness (OSCAR)を提案する。
本手法は,様々なシミュレーション操作問題に対して評価し,制御器のベースラインの配列よりも大幅に改善されていることを示す。
論文 参考訳(メタデータ) (2021-10-02T01:21:38Z) - Learning to Locomote with Deep Neural-Network and CPG-based Control in a
Soft Snake Robot [19.80726424244039]
生体ヘビに触発されたソフトロボットヘビの新しい移動制御法を提案する。
提案した制御器の性能は,シミュレーションロボットと実ソフトヘビロボットの両方を用いて実験的に検証した。
論文 参考訳(メタデータ) (2020-01-13T04:32:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。