Causal discovery of linear non-Gaussian acyclic models in the presence
of latent confounders
- URL: http://arxiv.org/abs/2001.04197v4
- Date: Wed, 4 Nov 2020 11:41:54 GMT
- Title: Causal discovery of linear non-Gaussian acyclic models in the presence
of latent confounders
- Authors: Takashi Nicholas Maeda and Shohei Shimizu
- Abstract summary: This paper proposes a causal functional model-based method called repetitive causal discovery (RCD) to discover the causal structure of observed variables affected by latent confounders.
RCD repeats inferring the causal directions between a small number of observed variables and determines whether the relationships are affected by latent confounders.
- Score: 6.1221613913018675
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Causal discovery from data affected by latent confounders is an important and
difficult challenge. Causal functional model-based approaches have not been
used to present variables whose relationships are affected by latent
confounders, while some constraint-based methods can present them. This paper
proposes a causal functional model-based method called repetitive causal
discovery (RCD) to discover the causal structure of observed variables affected
by latent confounders. RCD repeats inferring the causal directions between a
small number of observed variables and determines whether the relationships are
affected by latent confounders. RCD finally produces a causal graph where a
bi-directed arrow indicates the pair of variables that have the same latent
confounders, and a directed arrow indicates the causal direction of a pair of
variables that are not affected by the same latent confounder. The results of
experimental validation using simulated data and real-world data confirmed that
RCD is effective in identifying latent confounders and causal directions
between observed variables.
Related papers
- Identifiable Latent Polynomial Causal Models Through the Lens of Change [82.14087963690561]
Causal representation learning aims to unveil latent high-level causal representations from observed low-level data.
One of its primary tasks is to provide reliable assurance of identifying these latent causal models, known as identifiability.
arXiv Detail & Related papers (2023-10-24T07:46:10Z) - Nonlinearity, Feedback and Uniform Consistency in Causal Structural
Learning [0.8158530638728501]
Causal Discovery aims to find automated search methods for learning causal structures from observational data.
This thesis focuses on two questions in causal discovery: (i) providing an alternative definition of k-Triangle Faithfulness that (i) is weaker than strong faithfulness when applied to the Gaussian family of distributions, and (ii) under the assumption that the modified version of Strong Faithfulness holds.
arXiv Detail & Related papers (2023-08-15T01:23:42Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Towards Causal Representation Learning and Deconfounding from Indefinite
Data [17.793702165499298]
Non-statistical data (e.g., images, text, etc.) encounters significant conflicts in terms of properties and methods with traditional causal data.
We redefine causal data from two novel perspectives and then propose three data paradigms.
We implement the above designs as a dynamic variational inference model, tailored to learn causal representation from indefinite data.
arXiv Detail & Related papers (2023-05-04T08:20:37Z) - Identifying Weight-Variant Latent Causal Models [82.14087963690561]
We find that transitivity acts as a key role in impeding the identifiability of latent causal representations.
Under some mild assumptions, we can show that the latent causal representations can be identified up to trivial permutation and scaling.
We propose a novel method, termed Structural caUsAl Variational autoEncoder, which directly learns latent causal representations and causal relationships among them.
arXiv Detail & Related papers (2022-08-30T11:12:59Z) - Causal Discovery in Linear Structural Causal Models with Deterministic
Relations [27.06618125828978]
We focus on the task of causal discovery form observational data.
We derive a set of necessary and sufficient conditions for unique identifiability of the causal structure.
arXiv Detail & Related papers (2021-10-30T21:32:42Z) - Variational Causal Networks: Approximate Bayesian Inference over Causal
Structures [132.74509389517203]
We introduce a parametric variational family modelled by an autoregressive distribution over the space of discrete DAGs.
In experiments, we demonstrate that the proposed variational posterior is able to provide a good approximation of the true posterior.
arXiv Detail & Related papers (2021-06-14T17:52:49Z) - Disentangling Observed Causal Effects from Latent Confounders using
Method of Moments [67.27068846108047]
We provide guarantees on identifiability and learnability under mild assumptions.
We develop efficient algorithms based on coupled tensor decomposition with linear constraints to obtain scalable and guaranteed solutions.
arXiv Detail & Related papers (2021-01-17T07:48:45Z) - CausalVAE: Structured Causal Disentanglement in Variational Autoencoder [52.139696854386976]
The framework of variational autoencoder (VAE) is commonly used to disentangle independent factors from observations.
We propose a new VAE based framework named CausalVAE, which includes a Causal Layer to transform independent factors into causal endogenous ones.
Results show that the causal representations learned by CausalVAE are semantically interpretable, and their causal relationship as a Directed Acyclic Graph (DAG) is identified with good accuracy.
arXiv Detail & Related papers (2020-04-18T20:09:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.