論文の概要: Handwritten Character Recognition Using Unique Feature Extraction
Technique
- arxiv url: http://arxiv.org/abs/2001.04208v1
- Date: Mon, 13 Jan 2020 13:06:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 23:25:31.473211
- Title: Handwritten Character Recognition Using Unique Feature Extraction
Technique
- Title(参考訳): 特徴抽出手法を用いた手書き文字認識
- Authors: Sai Abhishikth Ayyadevara, P N V Sai Ram Teja, Bharath K P, Rajesh
Kumar M
- Abstract要約: 我々は、幾何学的、ゾーンベースハイブリッド、勾配特徴抽出アプローチ、および3つの異なるニューラルネットワークのユニークな特徴の組み合わせを提案している。
提案した特徴抽出アルゴリズムは、個々の特徴よりも正確であり、また、畳み込みニューラルネットワークはこれら3つの中で最も効率的なニューラルネットワークである。
- 参考スコア(独自算出の注目度): 1.911678487931003
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: One of the most arduous and captivating domains under image processing is
handwritten character recognition. In this paper we have proposed a feature
extraction technique which is a combination of unique features of geometric,
zone-based hybrid, gradient features extraction approaches and three different
neural networks namely the Multilayer Perceptron network using Backpropagation
algorithm (MLP BP), the Multilayer Perceptron network using Levenberg-Marquardt
algorithm (MLP LM) and the Convolutional neural network (CNN) which have been
implemented along with the Minimum Distance Classifier (MDC). The procedures
lead to the conclusion that the proposed feature extraction algorithm is more
accurate than its individual counterparts and also that Convolutional Neural
Network is the most efficient neural network of the three in consideration.
- Abstract(参考訳): 画像処理における最も困難な領域の1つは手書き文字認識である。
本稿では,幾何学的,ゾーンベースハイブリッド,勾配特徴抽出アプローチと,バックプロパゲーションアルゴリズム(MLP BP)を用いた多層パーセプトロンネットワークと,Levenberg-Marquardtアルゴリズム(MLP LM)を用いた多層パーセプトロンネットワークと,最小距離分類器(MDC)とともに実装された畳み込みニューラルネットワーク(CNN)を組み合わせた特徴抽出手法を提案する。
この手法は,提案する特徴抽出アルゴリズムが個々の特徴抽出アルゴリズムよりも精度が高く,畳み込みニューラルネットワークが考慮される3つのニューラルネットワークの中で最も効率的であることを示す。
関連論文リスト
- Unveiling the Power of Sparse Neural Networks for Feature Selection [60.50319755984697]
スパースニューラルネットワーク(SNN)は、効率的な特徴選択のための強力なツールとして登場した。
動的スパーストレーニング(DST)アルゴリズムで訓練されたSNNは、平均して50%以上のメモリと55%以上のFLOPを削減できることを示す。
以上の結果から,DSTアルゴリズムで訓練したSNNによる特徴選択は,平均して50ドル以上のメモリと55%のFLOPを削減できることがわかった。
論文 参考訳(メタデータ) (2024-08-08T16:48:33Z) - Front-propagation Algorithm: Explainable AI Technique for Extracting Linear Function Approximations from Neural Networks [0.0]
本稿では、深層ニューラルネットワークの意思決定ロジックの解明を目的とした、新しいAI技術であるフロントプロパゲーションアルゴリズムを紹介する。
積分グラディエントやシェープ値などの他の一般的な説明可能性アルゴリズムとは異なり、提案アルゴリズムはネットワークの正確で一貫した線形関数説明を抽出することができる。
公開されているベンチマークデータセットに基づいてトレーニングされた3つの異なるニューラルネットワークアーキテクチャで、正確な線形関数を提供することの有効性を実証する。
論文 参考訳(メタデータ) (2024-05-25T14:50:23Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Multilayer Multiset Neuronal Networks -- MMNNs [55.2480439325792]
本研究は,2層以上の類似性ニューロンを組み込んだ多層神経回路網について述べる。
また,回避すべき画像領域に割り当てられる反プロトタイプ点の利用についても検討した。
論文 参考訳(メタデータ) (2023-08-28T12:55:13Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Parameter Convex Neural Networks [13.42851919291587]
本研究では,ある条件下でのニューラルネットワークのパラメータに関して凸である指数的多層ニューラルネットワーク(EMLP)を提案する。
後期実験では,指数グラフ畳み込みネットワーク(EGCN)を同じアーキテクチャで構築し,グラフ分類データセット上で実験を行う。
論文 参考訳(メタデータ) (2022-06-11T16:44:59Z) - Two-Stream Graph Convolutional Network for Intra-oral Scanner Image
Segmentation [133.02190910009384]
本稿では,2ストリームグラフ畳み込みネットワーク(TSGCN)を提案する。
TSGCNは3次元歯(表面)セグメンテーションにおいて最先端の方法よりも優れています。
論文 参考訳(メタデータ) (2022-04-19T10:41:09Z) - Deep Convolutional Learning-Aided Detector for Generalized Frequency
Division Multiplexing with Index Modulation [0.0]
提案手法は、まずゼロフォース検出器(ZF)を用いて受信信号を前処理し、その後、畳み込みニューラルネットワーク(CNN)と完全連結ニューラルネットワーク(FCNN)からなるニューラルネットワークを用いる。
FCNN部は2つの完全に接続された層しか使用せず、複雑さとBER(bit error rate)パフォーマンスのトレードオフをもたらすことができる。
提案したディープ畳み込みニューラルネットワークに基づく検出・復調方式は,ZF検出器よりも高いBER性能を示し,複雑性が増大することが実証されている。
論文 参考訳(メタデータ) (2022-02-06T22:18:42Z) - TSGCNet: Discriminative Geometric Feature Learning with Two-Stream
GraphConvolutional Network for 3D Dental Model Segmentation [141.2690520327948]
2流グラフ畳み込みネットワーク(TSGCNet)を提案し、異なる幾何学的特性から多視点情報を学ぶ。
3次元口腔内スキャナーで得られた歯科モデルのリアルタイムデータセットを用いてTSGCNetの評価を行った。
論文 参考訳(メタデータ) (2020-12-26T08:02:56Z) - A Genetic Algorithm based Kernel-size Selection Approach for a
Multi-column Convolutional Neural Network [11.040847116812046]
本稿では,畳み込みニューラルネットワークアーキテクチャのハイパーパラメータ(カーネルサイズ)の最適組み合わせを見つけるための遺伝的アルゴリズムに基づく手法を提案する。
本手法は手書き文字と数字の異なる3つの一般的なデータセットで評価される。
論文 参考訳(メタデータ) (2019-12-28T05:37:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。