論文の概要: Deep convolutional neural networks for multi-planar lung nodule
detection: improvement in small nodule identification
- arxiv url: http://arxiv.org/abs/2001.04537v3
- Date: Wed, 9 Dec 2020 20:40:29 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 22:57:03.100605
- Title: Deep convolutional neural networks for multi-planar lung nodule
detection: improvement in small nodule identification
- Title(参考訳): 多平面肺結節検出のための深層畳み込みニューラルネットワーク:小結節識別の改善
- Authors: Sunyi Zheng, Ludo J. Cornelissen, Xiaonan Cui, Xueping Jing, Raymond
N. J. Veldhuis, Matthijs Oudkerk, and Peter M.A. van Ooijen
- Abstract要約: 臨床的には、小さな肺結節は放射線医によって容易に見落としられる。
畳み込みニューラルネットワークを用いた多平面検出システムを提案する。
- 参考スコア(独自算出の注目度): 3.553706252828364
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Objective: In clinical practice, small lung nodules can be easily overlooked
by radiologists. The paper aims to provide an efficient and accurate detection
system for small lung nodules while keeping good performance for large nodules.
Methods: We propose a multi-planar detection system using convolutional neural
networks. The 2-D convolutional neural network model, U-net++, was trained by
axial, coronal, and sagittal slices for the candidate detection task. All
possible nodule candidates from the three different planes are combined. For
false positive reduction, we apply 3-D multi-scale dense convolutional neural
networks to efficiently remove false positive candidates. We use the public
LIDC-IDRI dataset which includes 888 CT scans with 1186 nodules annotated by
four radiologists. Results: After ten-fold cross-validation, our proposed
system achieves a sensitivity of 94.2% with 1.0 false positive/scan and a
sensitivity of 96.0% with 2.0 false positives/scan. Although it is difficult to
detect small nodules (i.e. < 6 mm), our designed CAD system reaches a
sensitivity of 93.4% (95.0%) of these small nodules at an overall false
positive rate of 1.0 (2.0) false positives/scan. At the nodule candidate
detection stage, results show that a multi-planar method is capable to detect
more nodules compared to using a single plane. Conclusion: Our approach
achieves good performance not only for small nodules, but also for large
lesions on this dataset. This demonstrates the effectiveness and efficiency of
our developed CAD system for lung nodule detection. Significance: The proposed
system could provide support for radiologists on early detection of lung
cancer.
- Abstract(参考訳): 目的: 臨床において小肺結節は放射線科医によって容易に見過ごせる。
本研究の目的は, 肺小結節に対する高効率かつ高精度な肺結節検出システムを提供することである。
手法:畳み込みニューラルネットワークを用いた複数平面検出システムを提案する。
2次元畳み込みニューラルネットワークモデルであるu-net++は、候補検出タスクのために軸、コロナ、矢状スライスによって訓練された。
3つの異なる平面から可能な全てのノジュール候補は結合される。
偽陽性の除去には、3次元多次元高密度畳み込みニューラルネットワークを用いて効率よく偽陽性候補を除去する。
LIDC-IDRIデータセットは888個のCTスキャンと1186個の結節を4人の放射線技師が注釈した。
結果: 10倍のクロスバリデーション後, 本システムでは94.2%, 1.0偽陽性/スキャン, 96.0%, 2.0偽陽性/スキャンの感度を得た。
小型の結節(すなわち<6mm)を検出することは困難であるが、設計したcadシステムは、これらの小結節の93.4% (95.0%) の感度に達し、全体の偽陽性率は1.0 (2.0) の偽陽性/scanである。
結節候補検出段階では,複数平面法が単一平面を用いた場合に比べて多くの結節を検出できることを示す。
結論:本手法は小結節だけでなく,本データセットの大規模な病変にも有効である。
本研究は肺結節検出のためのCADシステムの有効性と効率性を示す。
意義: 本システムは, 肺癌早期発見における放射線科医の支援を期待できる。
関連論文リスト
- MSDet: Receptive Field Enhanced Multiscale Detection for Tiny Pulmonary Nodule [17.838015589388014]
肺結節は肺癌の早期診断における重要な指標である。
従来のCT画像撮影法は、煩雑な処置、低検出率、ローカライゼーション精度の低下に悩まされていた。
肺小結節検出のためのマルチスケールアテンションおよび受容野ネットワークであるMSDetを提案する。
論文 参考訳(メタデータ) (2024-09-21T06:08:23Z) - Image Synthesis with Disentangled Attributes for Chest X-Ray Nodule
Augmentation and Detection [52.93342510469636]
肺癌早期検診では胸部X線像の肺結節検出が一般的である。
ディープラーニングに基づくコンピュータ支援診断(CAD)システムは、CXRの結節スクリーニングのために放射線科医をサポートすることができる。
このようなデータセットの可用性を損なうため,データ拡張のために肺結節合成法を提案する。
論文 参考訳(メタデータ) (2022-07-19T16:38:48Z) - MHSnet: Multi-head and Spatial Attention Network with False-Positive
Reduction for Pulmonary Nodules Detection [6.863130535003796]
肺癌の早期発見は、疾患の予防、治療、死亡率の低下に重要である。
既存の肺結節検出法では偽陽性が多すぎる。
肺結節を検出するために,マルチヘッド検出と空間的絞殺ネットワーク(MHSnet)を提案する。
論文 参考訳(メタデータ) (2022-01-31T17:56:08Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Effect of Input Size on the Classification of Lung Nodules Using
Convolutional Neural Networks [0.12891210250935145]
低用量CTによる肺がん検診は,従来の胸部X線撮影と比較して肺がん死亡率を20%低下させる。
コンピュータ支援検出システム(CAD)は,CTスキャンのスライス数を最大600にし,高速かつ高精度なデータ評価に極めて重要である。
本研究では, 畳み込みニューラルネットワーク(CNN)を用いてCT肺検診を解析し, 偽陽性を減少させる枠組みを提案する。
論文 参考訳(メタデータ) (2021-07-11T16:52:30Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - SCPM-Net: An Anchor-free 3D Lung Nodule Detection Network using Sphere
Representation and Center Points Matching [47.79483848496141]
3次元球面表現に基づく中心点マッチング検出ネットワーク(SCPM-Net)を提案する。
アンカーフリーで、nodule/anchorパラメータを手動で設計することなく、nodulesの位置、半径、オフセットを自動的に予測する。
提案するSCPM-Netフレームワークは,既存のアンカーベースおよびアンカーフリーの肺結節検出法と比較して,優れた性能を示すことを示す。
論文 参考訳(メタデータ) (2021-04-12T05:51:29Z) - A new semi-supervised self-training method for lung cancer prediction [0.28734453162509355]
CT(Computerd Tomography)スキャンから結節を同時に検出し、分類する方法は比較的少ない。
本研究は,Nuisy Student法による最先端の自己訓練法を用いて,肺結節の検出と分類を行うための完全なエンドツーエンドスキームを提案する。
論文 参考訳(メタデータ) (2020-12-17T09:53:51Z) - CovidDeep: SARS-CoV-2/COVID-19 Test Based on Wearable Medical Sensors
and Efficient Neural Networks [51.589769497681175]
新型コロナウイルス(SARS-CoV-2)がパンデミックを引き起こしている。
SARS-CoV-2の逆転写-ポリメラーゼ連鎖反応に基づく現在の試験体制は、試験要求に追いついていない。
我々は,効率的なDNNと市販のWMSを組み合わせたCovidDeepというフレームワークを提案する。
論文 参考訳(メタデータ) (2020-07-20T21:47:28Z) - Lung Segmentation and Nodule Detection in Computed Tomography Scan using
a Convolutional Neural Network Trained Adversarially using Turing Test Loss [6.375447757249894]
肺がんは世界中で最も多く見られるがんであり、死亡率が高い。
悪性腫瘍の症状である結節は、患者のCTスキャンで約0.0125~0.025%の体積を占める。
この問題に対処するために,計算効率の良い2段階フレームワークを提案する。
第1段階では、肺領域のチューリング試験損失セグメントを用いて、畳み込みニューラルネットワーク(CNN)が逆行訓練を行った。
第2段階では、区分けされた領域から採取されたパッチは、結節の存在を検出するために分類される。
論文 参考訳(メタデータ) (2020-06-16T16:51:53Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。