論文の概要: Lung Segmentation and Nodule Detection in Computed Tomography Scan using
a Convolutional Neural Network Trained Adversarially using Turing Test Loss
- arxiv url: http://arxiv.org/abs/2006.09308v1
- Date: Tue, 16 Jun 2020 16:51:53 GMT
- ステータス: 処理完了
- システム内更新日: 2022-11-20 20:48:58.149526
- Title: Lung Segmentation and Nodule Detection in Computed Tomography Scan using
a Convolutional Neural Network Trained Adversarially using Turing Test Loss
- Title(参考訳): チューリング試験損失を用いた畳み込みニューラルネットワークを用いたctにおける肺分節と結節の検出
- Authors: Rakshith Sathish, Rachana Sathish, Ramanathan Sethuraman and Debdoot
Sheet
- Abstract要約: 肺がんは世界中で最も多く見られるがんであり、死亡率が高い。
悪性腫瘍の症状である結節は、患者のCTスキャンで約0.0125~0.025%の体積を占める。
この問題に対処するために,計算効率の良い2段階フレームワークを提案する。
第1段階では、肺領域のチューリング試験損失セグメントを用いて、畳み込みニューラルネットワーク(CNN)が逆行訓練を行った。
第2段階では、区分けされた領域から採取されたパッチは、結節の存在を検出するために分類される。
- 参考スコア(独自算出の注目度): 6.375447757249894
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Lung cancer is the most common form of cancer found worldwide with a high
mortality rate. Early detection of pulmonary nodules by screening with a
low-dose computed tomography (CT) scan is crucial for its effective clinical
management. Nodules which are symptomatic of malignancy occupy about 0.0125 -
0.025\% of volume in a CT scan of a patient. Manual screening of all slices is
a tedious task and presents a high risk of human errors. To tackle this problem
we propose a computationally efficient two stage framework. In the first stage,
a convolutional neural network (CNN) trained adversarially using Turing test
loss segments the lung region. In the second stage, patches sampled from the
segmented region are then classified to detect the presence of nodules. The
proposed method is experimentally validated on the LUNA16 challenge dataset
with a dice coefficient of $0.984\pm0.0007$ for 10-fold cross-validation.
- Abstract(参考訳): 肺がんは世界中で最も多く見られるがんであり、死亡率が高い。
低線量ct(low-dose ct)による肺結節の早期検出は,その効果的な臨床管理に不可欠である。
悪性腫瘍の症状である結節は、患者のctスキャンで約0.01250.025\%の容積を占める。
すべてのスライスの手動スクリーニングは面倒な作業であり、ヒューマンエラーのリスクが高い。
この問題に取り組むため,我々は計算効率の高い二段階フレームワークを提案する。
第1段階では、肺領域のチューリング試験損失セグメントを用いて、畳み込みニューラルネットワーク(CNN)が逆行訓練を行った。
第2段階では、セグメント領域からサンプリングされたパッチを分類し、結節の存在を検出する。
提案手法は10倍のクロスバリデーションに対して, dice係数0.984\pm0.0007$のluna16チャレンジデータセット上で実験的に検証される。
関連論文リスト
- Lung-CADex: Fully automatic Zero-Shot Detection and Classification of Lung Nodules in Thoracic CT Images [45.29301790646322]
コンピュータ支援診断は早期の肺結節の検出に役立ち、その後の結節の特徴づけを促進する。
MedSAMと呼ばれるSegment Anything Modelの変種を用いて肺結節をゼロショットでセグメント化するためのCADeを提案する。
また、放射能特徴のギャラリーを作成し、コントラスト学習を通じて画像と画像のペアを整列させることにより、良性/良性としての結節的特徴付けを行うCADxを提案する。
論文 参考訳(メタデータ) (2024-07-02T19:30:25Z) - Double Integral Enhanced Zeroing Neural Network Optimized with ALSOA
fostered Lung Cancer Classification using CT Images [1.1510009152620668]
肺がんは最も致命的な疾患の1つであり、疾患や死亡の原因となっている。
提案手法は既存の手法で解析した18.32%,27.20%,34.32%の精度で得られた。
論文 参考訳(メタデータ) (2023-12-05T10:53:35Z) - SGDA: Towards 3D Universal Pulmonary Nodule Detection via Slice Grouped
Domain Attention [47.44114201293201]
肺がんは世界中でがんの死因となっている。
現在の肺結節検出法は通常ドメイン固有である。
肺結節検出ネットワークの一般化能力を高めるために,スライスグループドメインアテンション(SGDA)モジュールを提案する。
論文 参考訳(メタデータ) (2023-03-07T03:17:49Z) - Identification of lung nodules CT scan using YOLOv5 based on convolution
neural network [0.0]
本研究は, 肺に発生する結節を同定することを目的とした。
1段階検出器YOLOv5は280 CT SCANで訓練された。
論文 参考訳(メタデータ) (2022-12-31T17:31:22Z) - MHSnet: Multi-head and Spatial Attention Network with False-Positive
Reduction for Pulmonary Nodules Detection [6.863130535003796]
肺癌の早期発見は、疾患の予防、治療、死亡率の低下に重要である。
既存の肺結節検出法では偽陽性が多すぎる。
肺結節を検出するために,マルチヘッド検出と空間的絞殺ネットワーク(MHSnet)を提案する。
論文 参考訳(メタデータ) (2022-01-31T17:56:08Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
教師なし異常検出(UAD)は、健康な被験者の異常なデータセットからデータ分布を学習し、分布サンプルの抽出に応用することができる。
本研究では,コンテクストエンコーディング(context-encoding)VAE(ceVAE)モデルのコンパクトバージョンと,前処理と後処理のステップを組み合わせて,UADパイプライン(StRegA)を作成することを提案する。
提案したパイプラインは、BraTSデータセットのT2w画像と0.859$pm$0.112の腫瘍を検出しながら、Diceスコアが0.642$pm$0.101に達した。
論文 参考訳(メタデータ) (2022-01-31T14:27:35Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
乳腺腫瘍の分類と分別を同時に行うための,効率的で軽量な学習アーキテクチャを提案する。
腫瘍分類ネットワークにセグメンテーションタスクを組み込むことにより,腫瘍領域に着目したバックボーンネットワークで表現を学習する。
腫瘍分類の精度、感度、特異性はそれぞれ88.6%、94.1%、85.3%である。
論文 参考訳(メタデータ) (2022-01-13T05:24:40Z) - Effect of Input Size on the Classification of Lung Nodules Using
Convolutional Neural Networks [0.12891210250935145]
低用量CTによる肺がん検診は,従来の胸部X線撮影と比較して肺がん死亡率を20%低下させる。
コンピュータ支援検出システム(CAD)は,CTスキャンのスライス数を最大600にし,高速かつ高精度なデータ評価に極めて重要である。
本研究では, 畳み込みニューラルネットワーク(CNN)を用いてCT肺検診を解析し, 偽陽性を減少させる枠組みを提案する。
論文 参考訳(メタデータ) (2021-07-11T16:52:30Z) - Controlling False Positive/Negative Rates for Deep-Learning-Based
Prostate Cancer Detection on Multiparametric MR images [58.85481248101611]
そこで本研究では,病変からスライスまでのマッピング機能に基づく,病変レベルのコスト感受性損失と付加的なスライスレベルの損失を組み込んだ新しいPCa検出ネットワークを提案する。
1) 病変レベルFNRを0.19から0.10に, 病変レベルFPRを1.03から0.66に減らした。
論文 参考訳(メタデータ) (2021-06-04T09:51:27Z) - Wide & Deep neural network model for patch aggregation in CNN-based
prostate cancer detection systems [51.19354417900591]
前立腺癌(PCa)は、2020年に約141万件の新規感染者と約37万5000人の死者を出した男性の死因の1つである。
自動診断を行うには、まず前立腺組織サンプルをギガピクセル分解能全スライド画像にデジタイズする。
パッチと呼ばれる小さなサブイメージが抽出され、予測され、パッチレベルの分類が得られる。
論文 参考訳(メタデータ) (2021-05-20T18:13:58Z) - A new semi-supervised self-training method for lung cancer prediction [0.28734453162509355]
CT(Computerd Tomography)スキャンから結節を同時に検出し、分類する方法は比較的少ない。
本研究は,Nuisy Student法による最先端の自己訓練法を用いて,肺結節の検出と分類を行うための完全なエンドツーエンドスキームを提案する。
論文 参考訳(メタデータ) (2020-12-17T09:53:51Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。