論文の概要: Boosting Deep Face Recognition via Disentangling Appearance and Geometry
- arxiv url: http://arxiv.org/abs/2001.04559v1
- Date: Mon, 13 Jan 2020 23:19:58 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-11 22:49:04.403838
- Title: Boosting Deep Face Recognition via Disentangling Appearance and Geometry
- Title(参考訳): 遠ざかる外観と幾何学による深層顔認識の促進
- Authors: Ali Dabouei, Fariborz Taherkhani, Sobhan Soleymani, Jeremy Dawson,
Nasser M. Nasrabadi
- Abstract要約: 顔認識タスクにおける外観と幾何学的表現を両立させる枠組みを提案する。
空間変換を取り入れた幾何学的に同一の顔を生成する。
提案手法は深層顔認識モデルの性能を向上させる。
- 参考スコア(独自算出の注目度): 33.196270681809395
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a framework for disentangling the appearance and
geometry representations in the face recognition task. To provide supervision
for this aim, we generate geometrically identical faces by incorporating
spatial transformations. We demonstrate that the proposed approach enhances the
performance of deep face recognition models by assisting the training process
in two ways. First, it enforces the early and intermediate convolutional layers
to learn more representative features that satisfy the properties of
disentangled embeddings. Second, it augments the training set by altering faces
geometrically. Through extensive experiments, we demonstrate that integrating
the proposed approach into state-of-the-art face recognition methods
effectively improves their performance on challenging datasets, such as LFW,
YTF, and MegaFace. Both theoretical and practical aspects of the method are
analyzed rigorously by concerning ablation studies and knowledge transfer
tasks. Furthermore, we show that the knowledge leaned by the proposed method
can favor other face-related tasks, such as attribute prediction.
- Abstract(参考訳): 本稿では,顔認識タスクにおける外観と幾何学的表現を両立させる枠組みを提案する。
この目的のために,空間変換を取り入れた幾何学的に同一の顔を生成する。
提案手法は, 学習過程を2つの方法で支援することにより, 深部顔認識モデルの性能を高めることを実証する。
まず、初期および中間の畳み込み層を強制し、不連続埋め込みの特性を満たすより代表的な特徴を学ぶ。
第二に、顔を幾何学的に変化させることでトレーニングセットを強化する。
本研究では,提案手法を最先端の顔認識手法に統合することで,lfw,ytf,megafaceなどの挑戦的データセットの性能を効果的に向上できることを実証する。
本手法の理論的および実用的側面は, アブレーション研究と知識伝達課題により厳密に解析される。
さらに,提案手法で学習した知識は,属性予測などの他の顔関連課題に有利であることを示す。
関連論文リスト
- Emotic Masked Autoencoder with Attention Fusion for Facial Expression Recognition [1.4374467687356276]
本稿では,MAE-Face self-supervised learning (SSL) 法と多視点融合注意機構を組み合わせた表現分類手法を提案する。
我々は、重要な顔の特徴を強調表示して、そのような機能がモデルのガイドとして機能するかどうかを判断することを目的とした、実装が容易でトレーニングなしのフレームワークを提案する。
Aff-wild2データセットにおけるモデル性能の改善により,本手法の有効性が検証された。
論文 参考訳(メタデータ) (2024-03-19T16:21:47Z) - Faceptor: A Generalist Model for Face Perception [52.8066001012464]
Faceptorは、よく設計されたシングルエンコーダのデュアルデコーダアーキテクチャを採用するために提案されている。
Faceptorへのレイヤアテンションにより、モデルが最適なレイヤから機能を適応的に選択して、望ましいタスクを実行することができる。
我々のトレーニングフレームワークは補助的な教師付き学習にも適用でき、年齢推定や表現認識といったデータスパースタスクの性能を大幅に向上させることができる。
論文 参考訳(メタデータ) (2024-03-14T15:42:31Z) - Fiducial Focus Augmentation for Facial Landmark Detection [4.433764381081446]
本稿では,モデルによる顔構造理解を高めるために,新しい画像強調手法を提案する。
我々は,Deep Canonical correlation Analysis (DCCA) に基づく損失を考慮した,シームズアーキテクチャに基づくトレーニング機構を採用している。
提案手法は,様々なベンチマークデータセットにおいて,最先端のアプローチよりも優れている。
論文 参考訳(メタデータ) (2024-02-23T01:34:00Z) - Appearance Debiased Gaze Estimation via Stochastic Subject-Wise
Adversarial Learning [33.55397868171977]
外観に基づく視線推定はコンピュータビジョンにおいて注目されており、様々な深層学習技術を用いて顕著な改善が達成されている。
本稿では,被験者の外観を一般化するネットワークを訓練する,SAZE学習という新しい枠組みを提案する。
実験の結果,MPIIGazeデータセットとEyeDiapデータセットの3.89と4.42をそれぞれ達成した。
論文 参考訳(メタデータ) (2024-01-25T00:23:21Z) - Masked Modeling for Self-supervised Representation Learning on Vision
and Beyond [69.64364187449773]
仮面モデリングは、トレーニング中に比例的にマスキングされる元のデータの一部を予測する、独特なアプローチとして現れてきた。
マスクモデリングにおけるテクニックの詳細については,多様なマスキング戦略,ターゲット回復,ネットワークアーキテクチャなどについて詳述する。
我々は、現在の手法の限界について議論し、マスクモデリング研究を進めるためのいくつかの道のりを指摘した。
論文 参考訳(メタデータ) (2023-12-31T12:03:21Z) - DeepFidelity: Perceptual Forgery Fidelity Assessment for Deepfake
Detection [67.3143177137102]
ディープフェイク検出(Deepfake detection)とは、画像やビデオにおいて、人工的に生成された顔や編集された顔を検出すること。
本稿では,実顔と偽顔とを適応的に識別するDeepFidelityという新しいDeepfake検出フレームワークを提案する。
論文 参考訳(メタデータ) (2023-12-07T07:19:45Z) - Enhancing Face Recognition with Latent Space Data Augmentation and
Facial Posture Reconstruction [8.493314424950599]
顔データセットを拡張するためのFRA(Face Representation Augmentation)というアプローチを提案する。
FRAは、顔表現学習アルゴリズムによって生成された顔埋め込みの操作に焦点を移す最初の方法である。
提案手法は,MagFace,ArcFace,CosFaceの基本モデルと比較して,識別精度を9.52 %,10.04 %,16.60 %改善する。
論文 参考訳(メタデータ) (2023-01-27T20:54:58Z) - Recent Progress in Appearance-based Action Recognition [73.6405863243707]
アクション認識は、ビデオ内の様々な人間の行動を特定するタスクである。
最近の外見に基づく手法は、正確な行動認識に向けて有望な進歩を遂げている。
論文 参考訳(メタデータ) (2020-11-25T10:18:12Z) - Learning Oracle Attention for High-fidelity Face Completion [121.72704525675047]
U-Net構造に基づく顔補完のための包括的フレームワークを設計する。
複数のスケールで顔のテクスチャ間の相関関係を効率よく学習する双対空間アテンションモジュールを提案する。
顔成分の位置を事前の知識として捉え,これらの領域に複数識別器を課す。
論文 参考訳(メタデータ) (2020-03-31T01:37:10Z) - Dual-Attention GAN for Large-Pose Face Frontalization [59.689836951934694]
本稿では,フォトリアリスティック顔フロンダル化のためのDA-GAN(Dual-Attention Generative Adversarial Network)を提案する。
具体的には、ローカル機能と長距離依存関係を統合するために、自己アテンションベースのジェネレータが導入された。
顔領域の局所的特徴を強調するために,新しい顔認識に基づく識別器を適用した。
論文 参考訳(メタデータ) (2020-02-17T20:00:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。