論文の概要: Recent Progress in Appearance-based Action Recognition
- arxiv url: http://arxiv.org/abs/2011.12619v1
- Date: Wed, 25 Nov 2020 10:18:12 GMT
- ステータス: 処理完了
- システム内更新日: 2022-09-21 03:05:46.304662
- Title: Recent Progress in Appearance-based Action Recognition
- Title(参考訳): 外観に基づく行動認識の最近の進歩
- Authors: Jack Humphreys, Zhe Chen, and Dacheng Tao
- Abstract要約: アクション認識は、ビデオ内の様々な人間の行動を特定するタスクである。
最近の外見に基づく手法は、正確な行動認識に向けて有望な進歩を遂げている。
- 参考スコア(独自算出の注目度): 73.6405863243707
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Action recognition, which is formulated as a task to identify various human
actions in a video, has attracted increasing interest from computer vision
researchers due to its importance in various applications. Recently,
appearance-based methods have achieved promising progress towards accurate
action recognition. In general, these methods mainly fulfill the task by
applying various schemes to model spatial and temporal visual information
effectively. To better understand the current progress of appearance-based
action recognition, we provide a comprehensive review of recent achievements in
this area. In particular, we summarise and discuss several dozens of related
research papers, which can be roughly divided into four categories according to
different appearance modelling strategies. The obtained categories include 2D
convolutional methods, 3D convolutional methods, motion representation-based
methods, and context representation-based methods. We analyse and discuss
representative methods from each category, comprehensively. Empirical results
are also summarised to better illustrate cutting-edge algorithms. We conclude
by identifying important areas for future research gleaned from our
categorisation.
- Abstract(参考訳): 映像中の様々な人間の行動を識別するタスクとして定式化されている行動認識は、様々なアプリケーションにおいて重要であることから、コンピュータビジョン研究者の関心が高まりつつある。
近年、出現に基づく手法は、正確な行動認識に有望な進歩を遂げている。
一般に、これらの手法は主に空間的および時間的視覚情報を効果的にモデル化するために様々なスキームを適用してタスクを遂行する。
外観に基づく行動認識の現在の進歩をよりよく理解するために,この領域における最近の成果を包括的にレビューする。
特に,複数の関連研究論文を要約し,概ね4つのカテゴリに分けて概説する。
得られたカテゴリには、2次元畳み込み法、3次元畳み込み法、動き表現に基づく方法、文脈表現に基づく方法が含まれる。
各カテゴリの代表的手法を総合的に分析し議論する。
実験結果は、最先端のアルゴリズムをよりよく説明するために要約される。
分類から得られた今後の研究の重要領域を特定して結論付ける。
関連論文リスト
- Mismatched: Evaluating the Limits of Image Matching Approaches and Benchmarks [9.388897214344572]
2次元画像からの3次元3次元再構成はコンピュータビジョンにおける活発な研究分野である。
伝統的にこの作業にはパラメトリック技術が用いられてきた。
近年の進歩は、学習ベースの方法にシフトしている。
論文 参考訳(メタデータ) (2024-08-29T11:16:34Z) - A Comprehensive Review of Few-shot Action Recognition [64.47305887411275]
アクション認識は、複雑で可変なビデオデータを手動でラベル付けすることのコストと非現実性に対処することを目的としている。
ビデオ中の人間のアクションを正確に分類するには、クラスごとにいくつかのラベル付き例だけを使用する必要がある。
論文 参考訳(メタデータ) (2024-07-20T03:53:32Z) - A Large-Scale Empirical Study on Improving the Fairness of Image Classification Models [22.522156479335706]
本稿では,現在ある最先端の公正性向上技術の性能を比較するための,最初の大規模実証的研究を行う。
その結果,各手法の性能は,データセットや属性によって大きく異なることがわかった。
異なる公平度評価指標は、その異なる焦点のために、明らかに異なる評価結果をもたらす。
論文 参考訳(メタデータ) (2024-01-08T06:53:33Z) - Better Understanding Differences in Attribution Methods via Systematic Evaluations [57.35035463793008]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
これらの評価手法を用いて、広範囲のモデルにおいて広く用いられている属性手法の長所と短所について検討する。
論文 参考訳(メタデータ) (2023-03-21T14:24:58Z) - Towards Better Understanding Attribution Methods [77.1487219861185]
モデル決定に最も影響を及ぼす画像領域を特定するために、ポストホック属性法が提案されている。
本稿では,これらの手法の忠実度をより確実に評価するための3つの新しい評価手法を提案する。
また,いくつかの属性法の性能を著しく向上する処理後平滑化ステップを提案する。
論文 参考訳(メタデータ) (2022-05-20T20:50:17Z) - Evaluation of Self-taught Learning-based Representations for Facial
Emotion Recognition [62.30451764345482]
この研究は、顔の感情認識のための自己学習の概念を通じて得られた教師なし表現を生成するための様々な戦略を記述する。
このアイデアは、オートエンコーダの初期化、アーキテクチャ、トレーニングデータを変化させることで、多様性を促進する補完的な表現を作ることである。
Jaffe と Cohn-Kanade のデータセットに対する残余のサブジェクトアウトプロトコルによる実験結果から,提案した多種多様な表現に基づく FER 手法が最先端のアプローチと好適に比較できることが示唆された。
論文 参考訳(メタデータ) (2022-04-26T22:48:15Z) - Continuous Human Action Recognition for Human-Machine Interaction: A
Review [39.593687054839265]
入力ビデオ内のアクションを認識することは難しいが、リアルタイムの人間と機械のインタラクションを必要とするアプリケーションに必要なタスクである。
我々は,ほとんどの最先端手法で使用される特徴抽出と学習戦略について述べる。
実世界のシナリオへのそのようなモデルの適用について検討し、いくつかの制限と研究の方向性について論じる。
論文 参考訳(メタデータ) (2022-02-26T09:25:44Z) - Deep Gait Recognition: A Survey [15.47582611826366]
歩行認識は、歩き方に基づいて個人を識別することを目的とした魅力的な生体測定モダリティです。
ディープラーニングは、差別的な表現を自動的に学習する能力によって、2015年からこの分野の研究環境を再構築した。
深層学習による歩行認識のブレークスルーと最近の展開を総合的に紹介します。
論文 参考訳(メタデータ) (2021-02-18T18:49:28Z) - A Grid-based Representation for Human Action Recognition [12.043574473965318]
ビデオにおけるヒューマンアクション認識(HAR)は、コンピュータビジョンにおける基本的な研究課題である。
本稿では,行動の最も識別性の高い外観情報を効率的に符号化する行動認識手法を提案する。
提案手法は, モデルが人間の行動を正確に認識できることを示すために, いくつかのベンチマークデータセットで検証される。
論文 参考訳(メタデータ) (2020-10-17T18:25:00Z) - Delving into 3D Action Anticipation from Streaming Videos [99.0155538452263]
アクション予測は、部分的な観察でアクションを認識することを目的としている。
本稿では,いくつかの相補的評価指標を導入し,フレームワイド動作分類に基づく基本モデルを提案する。
また,全動作表現とクラス非依存行動ラベルという2つの側面から補助情報を取り入れたマルチタスク学習戦略についても検討する。
論文 参考訳(メタデータ) (2019-06-15T10:30:29Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。